\(\dfrac{1}{4+x}\) đạt giá trị lớn nhất.

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
1 tháng 3 2023

A đạt giá trị lớn nhất khi \(4+x\) là số dương nhỏ nhất

Mà x là số nguyên \(\Rightarrow4+x\) là số nguyên dương nhỏ nhất

\(\Rightarrow4+x=1\Rightarrow x=-3\)

Để \(P=\frac{x-1}{x-3}\left(x∈Z ; x ≠0\right)\) nhận giá trị nguyên 

=> x - 1 ⋮ x - 3

=> ( x - 3 ) + 2 ⋮ x - 3

Mà x - 3 ⋮ x - 3 ∀ x ∈ Z

=> 2 ⋮ x - 3

=> x - 3 ∈ Ư(2)

Ta có bảng ;

x-3-2-112
x-1245
\(P=\frac{x-1}{x-3}\)\(\frac{1}{2}\)( loại ) ( do P nhận giá trị nguyên )-1 ( t/m )3 ( t/m )2 ( t/m )

Để P nhận giá trị nguyên lớn nhất => P = 3 và x = 4

VÌ ( 3 - x )2 ≥ 0 ∀ x ∈ Z

=> ( 3 - x )2 - 4 ≥ 0 - 4

=> Để A = ( 3 - x )2 - 4 nhận giá trị nhỏ nhất thì A = -4

<=> ( 3 - x )2 = 0

<=> 3 - x = 0

<=> x = 3

26 tháng 8 2021

kakashi hahahaha

1 tháng 3 2023

`A = (5x - 19)/(x-4) `

`= (5x-20)/(x-4) + 1/(x-4)`

`= 5 + 1/(x-4) `

`A ` đạt giá trị lớn nhất `<=> 1/(x-4)` có giá trị lớn nhất

`<=> x - 4` là số nguyên dương nhỏ nhất

`<=> x - 4 = 1`

`<=> x = 5`

Vậy `A` đạt giá trị lớn nhất `<=> x = 5`

7 tháng 3 2019

\(A=\frac{x-5}{x-3}=\frac{x-3-2}{x-3}=\frac{x-3}{x-3}-\frac{2}{x-3}=1-\frac{2}{x-3}\)

Để A đạt giá trị nhỏ nhất thì \(\frac{2}{x-3}\) đạt giá trị lớn nhất \(\Leftrightarrow x-3\)đạt giá trị nguyên dương nhỏ nhất \(\Leftrightarrow x-3=1\Leftrightarrow x=4\)

Vậy với x=4 thì A đạt giá trị nhỏ nhất.

10 tháng 5 2017

Bài A:

=>17\(⋮\) x-13

x-13\(\in\) Ư(17)

x-13=1

x=13+1

x=14

x-13=17

x=17+13

x=30

bạn tự làm tiếp nha

mơn bạn nha!

11 tháng 7 2018

Bài 1:Vì \(\left(x+1\right)^{2008}\ge0\) nên \(-\left(x+1\right)^{2008}\le0\)

\(\Rightarrow P=2010-\left(x+1\right)^{2008}\le2010-0=2010\)

Nên P lớn nhất khi \(P=2010\Rightarrow\left(x+1\right)^{2008}=0\Rightarrow x+1=0\Rightarrow x=-1\)

Bài 2:Vì 5>0 nên C nhỏ nhất khi \(\left|x\right|-2< 0\) và \(\left|x\right|-2\) lớn nhất

Nên \(\left|x\right|-2=-1\Rightarrow\left|x\right|=1\Rightarrow\orbr{\begin{cases}x=-1\\x=1\end{cases}}\)

11 tháng 7 2018

\(P=2010-\left(x+1\right)^{2008}\)

\(\Rightarrow P=2010-\left[\left(x+1\right)^{1004}\right]^2\)

\(\left[\left(x+1\right)^{1004}\right]^2\ge0\)

\(\Rightarrow P=2010-\left[\left(x+1\right)^{1004}\right]^2\le2010\)

Để \(P_{Min}\Rightarrow\left[\left(x+1\right)^{1004}\right]^2_{Min}\Rightarrow\left[\left(x+1\right)^{1004}\right]^2=0\)

\(\Rightarrow P=2010-0=2010\)

(Dấu"=" xảy ra <=> \(x=-1\)

Bài 2:

Để \(C_{Min}\Rightarrow|x|-2_{Min}\Rightarrow|x|_{Min}\Rightarrow|x|=1\Rightarrow|x|-2=-1\)

\(\Rightarrow C=-5\)

Vì để C Min => /x/ -2 là số nguyễn âm lơn nhất có thể

18 tháng 3 2018

Ta có : 

\(A=\frac{2017x+1}{2018x-2018}=\frac{2017x-2017+2018}{2018x-2018}=\frac{2017\left(x-1\right)}{2018\left(x-1\right)}+\frac{2018}{2018\left(x-1\right)}=\frac{2017}{2018}+\frac{1}{x-1}\)

Để đạt GTLN thì \(\frac{1}{x-1}\) phải đạt GTLN hay nói cách khác \(x-1>0\) và đạt GTNN 

\(\Rightarrow\)\(x-1=1\)

\(\Rightarrow\)\(x=2\)

Suy ra : \(A=\frac{2017x+1}{2018x-2018}=\frac{2017.2+1}{2018\left(2-1\right)}=\frac{4034+1}{2018.1}=\frac{4035}{2018}\)

Vậy \(A_{max}=\frac{4035}{2018}\) khi \(x=2\)

Chúc bạn học tốt ~