Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(8< 2^x\le2^9.2^{-5}\)
\(2^3< 2^x\le2^4\)
\(\Rightarrow x=4\)
b, \(27< 81^3.3^x< 243\)
\(3^3< 3^{12-x}< 3^5\)
\(\Rightarrow3< 12-x< 5\)
12-x=4
x=8
c,\(\left(\frac{2}{5}\right)^x>\left(\frac{2}{5}\right)^3.\left(\frac{2}{5}\right)^2\)
\(\left(\frac{2}{5}\right)^x>\left(\frac{2}{5}\right)^5\)
\(\Rightarrow x>5\)
x=6;7;8........
8<2x<29.2-5
23 < 2x< 24
=> x thuộc rỗng ( viết bằng kí hiệu )
\(a)8< 2^x\le2^9.2^{-5}\)
\(\Leftrightarrow2^3< 2^x\le2^9.\dfrac{1}{2^5}\)
\(\Leftrightarrow2^3< 2^x\le2^4\)
\(\Leftrightarrow x=4\)
\(b)27< 81^3:3^x< 243\)
\(\Leftrightarrow3^3< \left(3^4\right)^3:3^x< 3^5\)
\(\Leftrightarrow3^3< 3^{12}:3^x< 3^5\)
\(\Leftrightarrow3^3< 3^{12-x}< 3^5\)
\(\Leftrightarrow12-x=4\)
\(\Leftrightarrow x=8\)
a) \(8< 2^x\le2^9.2^{-5}\)
\(\Leftrightarrow2^3< x\le2^{9-5}\)
\(\Leftrightarrow2^3< 2^x\le2^4\)
\(\Leftrightarrow3< x\le4\Leftrightarrow x=4\)
b) \(27< 81^3:3^x< 243\)
\(\Leftrightarrow3^2< \left(3^4\right)^3:3^x< 3^5\)
\(\Leftrightarrow3^2< 3^{12}:3^x< 3^5\)
\(\Leftrightarrow3^2< 3^{12-x}< 3^5\)
\(\Leftrightarrow2< 12-x< 5\)
\(\Leftrightarrow\hept{\begin{cases}x=8\\x=9\end{cases}}\)
a)\(32^{-n}\cdot16^n=2048\)
\(\left(2^5\right)^{-n}\cdot\left(2^4\right)^n\)=2048
\(2^{-5n}\cdot2^{4n}\)=\(2^{11}\)
\(2^{-5n+4n}=2^{11}\)
\(2^{-x}=2^{11}\)
\(\Rightarrow x=-11\)
b)\(2^{-1}\cdot2^n+4\cdot2^n=9\cdot2^5\)
\(\frac{1}{2}\cdot2^n+4\cdot2^n=288\)
\(2^n\left(\frac{1}{2}+4\right)=288\)
\(2^n\cdot\frac{9}{2}=288\)
\(2^n=288:\frac{9}{2}\)
\(2^n=64\)
\(2^n=2^6\)
\(\Rightarrow n=6\)
a) 32-n . 16n = 2048
\(\frac{1}{32n}\) . 16n = 2048
\(\frac{1}{2^n.16^n}\) . 16n = 2048
\(\frac{1}{2^n}\) = 2048
2-n = 2048
2-n = 211
\(\Rightarrow\) -n = 11
\(\Rightarrow\) n = -11
Vậy n = -11
1.
a) \(x\in\left\{4;5;6;7;8;9;10;11;12;13\right\}\)
b) x=0
d) \(x=\frac{-1}{35}\) hoặc \(x=\frac{-13}{35}\)
e) \(x=\frac{2}{3}\)
Bài 1:
Ta có: \(x+\left(-\frac{31}{12}\right)^2=\left(\frac{49}{12}\right)^2-x\)
\(\Leftrightarrow2x=\frac{1440}{144}=10\)
\(\Rightarrow x=5\)
Khi đó: \(y^2=\left(\frac{49}{12}\right)^2-5=\frac{1681}{144}\)
=> \(\hept{\begin{cases}y=\frac{41}{12}\\y=-\frac{41}{12}\end{cases}}\)
1. \(2^x=4^{y-1}\Rightarrow2^x=\left(2^2\right)^{y-1}=2^{2y-2}\Rightarrow x=2y-2\)
\(27^y=3^{x+8}\Rightarrow\left(3^3\right)^y=3^{x+8}\Rightarrow3^{3y}=3^{x+8}\Rightarrow3y=x+8\)
ta có: x=2y-2
mà 3y=x+8
=> 3y=2y-2+8
=> 3y-2y+2-8=0
=> y-6=0
=> y=6
x=2y-2
=> x=2.6-2=12-2=10
Vậy x=10; y=6.
2.a.\(\left(-\frac{1}{3}\right)^{n-5}=\frac{1}{81}\)
\(\Rightarrow \left(-\frac{1}{3}\right)^{n-5}=\left(-\frac{1}{3}\right)^4\)
=> n-5=4
=> n=4+5
=> n=9
b.\(2^{-1}.2^n+4.2^n=9.2^5\)
\(\Rightarrow2^n.\left(2^{-1}+4\right)=9.32\)
=> 2n.(2-1+4)=288
=> 2n.(1/2+4)=288
=> 2n.9/2=288
=> 2n=288:9/2
=> 2n=64
=> 2n=26
Vậy n=6.
Ta có :
\(8< 2^x\le2^9.2^{-5}\)(1)
Xét :
\(2^9.2^{-5}=2^9.\frac{1}{2^5}=2^4\)(2)
Thay (2) vào (1) ta có :
\(\Rightarrow2^3< 2^x\le2^4\)
\(\Rightarrow2^x=2^4\)
\(\Rightarrow x=4\)