Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài cuối đây:
(x+1)+(x+2)+(x+3)+...+(x+100)=5750
[(x+100)+(x+1)].100 /2 =5750
(2x+101).100 /2 =5750
(2x+101).50=5750
2x+101=115
2x=14
x=7
a/ 3x.2.y3 = 54 Chia hai vế cho 2 được 3x.y3 = 27 \(\Leftrightarrow y^3=3^{3-x}\) (*)
(Đã chia hai vế cho 3x>0) Vì y là số tự nhiên nên y3 là một số tự nhiên do đó
33-x là số tự nhiên .\(\Leftrightarrow\)\(3-x\ge0\), x là số tự nhiên nên x nhận giá trị : x = 0 , x = 1 , x = 2 , x = 3 Kiểm tra giá trị nào của x trong bốn giá trị đó thì (*) thỏa mãn .
- với x = 0 Thì (*) trở thành y3 = 33 \(\Rightarrow y=3\)Vậy x = 0 và y = 3 thỏa mãn (*).
- Với x = 1 Thì (*) trở thành y3 = 32 không có số tự nhiên y nào thỏa mãn .
- V ới x = 2 Thì (*) trở thành y3 = 3 không có số tự nhiên y nào thỏa mãn
- Với x = 3 Thì (*) trở thành y3 = 30 Có giá trị y = 1 Vậy x = 3 và y = 1 Thỏa mãn.
Đáp số x = 0 , y = 3 và x = 3 , y = 1
b/ 5y.x3 = 135 \(\Leftrightarrow5^{y-1}.\left(\frac{x}{3}\right)^3=1\Leftrightarrow\hept{\begin{cases}y-1=0\\\frac{x}{3}=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=1\end{cases}}}\)
c/ \(2^{x^2}.3^y=48\Leftrightarrow2^{x^2}.3^y=2^4.3\Leftrightarrow2^{x^2-4}=3^{1-y}\Leftrightarrow\)\(\hept{\begin{cases}x^2-4=0\\1-y=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}}\)
Chúc Phạm Thạch Thảo học tập ngày càng giỏi nhé.
\(\left(b\right)3^2+3^4+3^x=3^{10}\)
\(\Rightarrow3^{2+4+x}=3^{10}\Rightarrow2+4+x=10\)
\(\Rightarrow6+x=10\Rightarrow x=10-6=4\)
\(\left(e\right)x.x^2.x^3.x^4=1024\)
\(\Rightarrow x^1.x^2.x^3.x^4=1024\Rightarrow x^{10}=1024\)
Mà \(1024=2^{10}\Rightarrow x=2\)
a,1+2+3+4...+x=45
có số hạng là (x-1)+1
suy ra:x.(x+1):2=45
x.(x+1)=90
x.(x+1)=9.10
suy ra:x=9
Vậy x=9
Ta có : 2x + 2x + 1 = 24
=> 2x(1 + 2) = 24
=> 2x.3 = 24
=> 2x = 8
=> 2x = 23
=> x = 3
Ta có : (x + 2)4 = (x + 2)6
=> (x + 2)4 - (x + 2)6 = 0
<=> (x + 2)4 (1 - (x + 2)2) = 0
<=> \(\orbr{\begin{cases}\left(x+2\right)^4=0\\\left(1-\left(x+2\right)^2\right)=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x+2=0\\\left(x+2\right)^2=1\end{cases}}\)
<=> \(\orbr{\begin{cases}x+2=0\\x+2=1\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-2\\x=-1\end{cases}}\)