Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 2:
a)đặt n²-n+13=a²
=> 4n²-4n+52=4a²
=> (4n²-4n+1) +51=4a²
=>(2n-1)²+51=4a²
=>4a²-(2n-1)²=51
=>(2a-2n+1)(2a+2n-1)=51
vì (2a-2n+1) và (2a+2n-1) là 2 số lẻ và (2a-2n+1) > (2a+2n-1)
=>(2a-2n+1)=51, (2a+2n-1)=1 hoặc (2a-2n+1)=17,(2a+2n-1)=3
với (2a-2n+1)=51, (2a+2n-1)=1 =>n=-12
với(2a-2n+1)=17,(2a+2n-1)=3 =>n=-7/2 (L)
KL:n=-12
bài 2:
a)đặt n²-n+13=a²
=> 4n²-4n+52=4a²
=> (4n²-4n+1) +51=4a²
=>(2n-1)²+51=4a²
=>4a²-(2n-1)²=51
=>(2a-2n+1)(2a+2n-1)=51
vì (2a-2n+1) và (2a+2n-1) là 2 số lẻ và (2a-2n+1) > (2a+2n-1)
=>(2a-2n+1)=51, (2a+2n-1)=1 hoặc (2a-2n+1)=17,(2a+2n-1)=3
với (2a-2n+1)=51, (2a+2n-1)=1 =>n=-12
với(2a-2n+1)=17,(2a+2n-1)=3 =>n=-7/2 (L)
KL:n=-12
Bài này hơi dài. Chúng ta thu hẹp lại xét x dương vì x dương và âm có vai trò như nhau
Đặt: \(2020+x^2=t^2\) ( thu hẹp với t dương )
=> \(t^2-x^2=2020\)
Chú ý rằng: \(\left(a-b\right)\left(a+b\right)=a\left(a+b\right)-b\left(a+b\right)=a^2+ab-ba-b^2=a^2-b^2\)
khi đó ta có:
\(\left(t-x\right)\left(t+x\right)=2020\)
=> \(t-x;t+x\inƯ\left(2020\right)=\left\{1;2020;2;1010;4;505;5;404;10;202;20;101\right\}\)
Chú ý: t - x và t + x cùng chẵn hoặc cùng lẻ
TH1: t - x = 2 và t + x = 1010
tổng hiệu => t = 506; x= 504
TH2: t - x = 10 và t + x = 202
=> t = 106; x = 96
Các trường hợp còn lại loại
Kết luận: x = 504 ; x = -504; x = 96; x = -96