Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2:
a: Gọi d=ƯCLN(4n+7;2n+3)
=>\(\left\{{}\begin{matrix}4n+7⋮d\\2n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4n+7⋮d\\4n+6⋮d\end{matrix}\right.\Leftrightarrow1⋮d\)
=>d=1
=>ƯCLN(4n+7;2n+3)=1
b: Gọi \(d=ƯCLN\left(3n+5;6n+9\right)\)
=>\(\left\{{}\begin{matrix}3n+5⋮d\\6n+9⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6n+10⋮d\\6n+9⋮d\end{matrix}\right.\)
=>\(1⋮d\)
=>d=1
=>Đây là phân số tối giản
a,
- Ta có:
A = 963 + 2493 + 351 + x
= 3807 + x
+ Để A chia hết cho 9
=> 3807 + x chia hết cho 9
=> x ∈ {0;9}
+ Để A không chia hết cho 9
=> 3807 + x không chia hết cho 9
=> A ∈ {1;2;3;4;5;6;7;8}
b,
Ta có:
B = 10 + 25 + x + 45
= 80 + x
+ Để B chia hết cho 5
=> 80 + x chia hết cho 5
=. x ∈ {0;5}
+ Để B không chia hết cho 5
=> 80 + x không chia hết cho 5
=> x ∈ { 1;2;3;4;6;7;8;9}
Chúc bạn thi tốt
3. Tìm n thuộc N để
a.27-5n chia hết cho n
do 5n chia hết cho n nên 27 phải chia hết cho n
n thuộc N nên n =1,3,9,27
và 5n< hoặc =27
suy ra n=1 hoặc 3
n=1 thỏa mãn
n=3 thỏa mãn
suy ra 2 nghiệm
(3+32+33)+(34+35+36)+...+(32005+32006+32007)
=3(1+3+32)34(1+3+32)+...+32005(1+3+32)
=3.13+3^4.13+...+3^2005.13
=13(3+34+...+32005)
tick mk nha
1. n không chia hết cho 3 suy ra n = 3k +1 hoặc n = 3k +2.
- nếu n = 3k +1 thì 5n + 1 = 5(3k +1) +1 = 15k + 6 ⋮ 3.
- nếu n = 3k +2 thì 5n + 2 = 5(3k + 2) +2 = 15k + 12 ⋮ 3
2. p là số nguyên tố lớn hơn 3 nên p sẽ có dạng 6k + 1 hoặc 6k + 5.
nếu p là 6k + 1 thì p + 2 = 6k + 3 ⋮ 3, không là số nguyên tố
do đó p có dạng 6k+5, khi đó p + 1 = 6k : 6 ⋮ 6.
3.
x(1-y) + 2(1-y) = 5
(x+2)(1-y) = 5
xét các trường hợp : x + 2 = 1; 1 - y = 5 và x + 2 = 5, 1 - y =1
4. ta có: n\(^2\) + 3 = (n+1)(n-1) + 4 ⋮ (n-1) khi 4 ⋮ (n-1), khi đó (n-1) \(\in\) Ư(4) .
Xin lỗi, mk chỉ biết bài 3:
Nhân cả 2 vế với 3 ta có:
3S = 1.2.3 +2.3.3 +3.4.3 +......+ 30.31.3
3S= 1.2.3 +2.3.( 4 - 1 ) +3.4. ( 5 - 2 ) +....+ 30.31. ( 32 - 29 )
3S= 1.2.3 + 2.3.4 - 2.3.1 + 3.4.5 - 3.4.2 +.....+ 30.31.32 - 30.31.29
3S= 30.31.32
S = 30.31.32 : 3
S = 9920
Vậy S = 9920
mik ko bit
tick cho mik 1 tick nhe