Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1+3+3^2+3^3+3^4+3^5+3^6
3A=3+3^2+3^3+3^4+3^5+3^6+3^7
3A-A=(3+3^2+3^3+3^4+3^5+3^6+3^7)-(1+3+3^2+3^3+3^4+3^5+3^6)
A=3^7-1
Vì A =3^7-1 ; B =3^7-1
=> A=B
Sửa đề:
\(A=1+3+3^2+3^3+3^4+3^5+3^6\)
\(3A=3+3^2+...+3^7\)
\(3A-A=\left(3+3^2+3^3+...+3^7\right)-\left(1+3+3^2+...+3^6\right)\)
\(2A=3^7-1\)
\(\Rightarrow A=\frac{3^7-1}{2}< 3^7-1=B\)
Vậy \(A< B\)
a: =>3x-9+26 chia hết cho x-3
=>\(x-3\in\left\{1;-1;2;-2;13;-13;26;-26\right\}\)
=>\(x\in\left\{4;2;5;1;16;-10;29;-23\right\}\)
b: =>6x+38 chia hết cho 2x-3
=>6x-9+47 chia hết cho 2x-3
=>\(2x-3\in\left\{1;-1;47;-47\right\}\)
=>\(x\in\left\{2;1;25;-22\right\}\)
Bài 3 :
a) 4.(x-5) - 2 3=24.3
4x-20-8=48
4x=76
x=19
b) 4.x3+15=271
4.x3=256
x3=64
=> x=4
c) ( 2x-3)2= 169
=> 2x-3= 13
2x=16
x=8
Chúc bạn học tốt !
4*(x-5) - 2^3 = 2^4*3
4*(x-5) - 8 = 16*3
4*(x-5) - 8 = 48
4*(x-5) = 48 + 8
4*(x-5) = 56
x- 5 = 56 : 4
x - 5 = 14
x = 14 + 5
x = 19
\(a>\)\(\left(x+2\right)\) thuộc \(Ư\left(20\right)\)
\(\left(x+1\right)\inƯ\left(20\right)=\left\{1;2;4;5;10;20\right\}\)
\(+>x+1=1\)
\(\Rightarrow x=0\)
\(+>x+1=2\)
\(\Rightarrow x=1\)
\(+>x+1=4\)
\(\Rightarrow x=3\)
\(+>x+1=5\)
\(\Rightarrow x=4\)
\(+>x+1=10\)
\(\Rightarrow x=9\)
\(+>x+1=20\)
\(\Rightarrow x=19\)
Vậy \(x\in\left\{0;1;3;4;9;19\right\}\)
\(b>\left(x-2\right)\) là ước của 6
\(\left(x-2\right)\inƯ\left(6\right)=\left\{1;2;3;6\right\}\)
\(+>x-2=1\)
\(\Rightarrow x=3\)
\(+>x-2=2\)
\(\Rightarrow x=4\)
\(+>x-2=3\)
\(\Rightarrow x=5\)
\(+>x-2=6\)
\(\Rightarrow x=8\)
Vậy \(x\in\left\{3;4;5;8\right\}\)
\(c>\left(2x+3\right)\) là \(Ư\left(10\right)\)
\(\left(2x+3\right)\inƯ\left(10\right)=\left\{1;2;5;10\right\}\)
\(+>2x+3=1\)
\(\Rightarrow x=-1\)
\(+>2x+3=2\)
\(\Rightarrow x=-\dfrac{1}{2}\)
\(+>2x+3=5\)
\(\Rightarrow x=1\)
\(+>2x+3=10\)
\(\Rightarrow x=\dfrac{7}{2}\)
Vậy \(x\in\left\{-1;-\dfrac{1}{2};1;\dfrac{7}{2}\right\}\)
a: x=3
b: \(2x-1=2\)
hay \(x=\dfrac{3}{2}\)
c: \(\Leftrightarrow\left[{}\begin{matrix}2x-3=3\\2x-3=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=0\end{matrix}\right.\)