Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x+1) + (2x+2) + (3x+3) + ...+ (10x+10) = 550
( x + 2x + 3x + ...+ 10x) + (1+2+3+..+10) = 550
x.(1+2+3+...+10) + 55 = 550
x.55 + 55 = 550
55.(x+1) = 550
x+ 1 = 10
x = 9
(x+1)+(2x+2)+.....+(10x+10)=550
x+1+2x+2+...+10x+10=550
(x+2x+3x+...+10x)+(1+2+3+4+...+10)=550
x nhân (1+2+3+...+10)+1 nhân (1+2+3+...+10)=550
(1+2+3+...+10) nhân (x+1)=550
55 nhân (x+1)=550 =>x+1=550:55=10
x =9
nk nghĩ v,hc tốt
1^3 + 2^3 + 3^3 + ... + 10^3 = ( x + 1)^2
=>1 + 8 + 27+......+ 000 = ( x + 1 ) ^ 2
=>3025 = ( x + 1 ) ^ 2
=>55 ^ 2 = ( x + 1 ) ^ 2
=>x + 1 = 55
=>x = 54
P/S: Chúc bạn hok tốt !!!
Ta có:(n-1)n(n+1) = n3-n
suy ra:n3=(n-1)n(n+1)+n
Thay vào biểu thức, ta được:
13+23+...+103=0.1.2+1+1.2.3+2+...+9.10.11+10
=(0.1.2+1.2.3+...+9.10.11)+(1+2+...+10)
=(0+1.2.3+...+9.10.11)+55
=(1.2.3+...+9.10.11)+55
=9.10.11.12−0.1.2.34 +55
=2970+55
=3025
=>(x+1)2=(-55)2 hoặc (x+1)2=552
=>x+1=-55 hoặc x+1=55
=>x=-56 hoặc x=54
hok tốt!!!
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+....+\frac{2}{x\left(x+1\right)}=\frac{2000}{2002}\)
\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+.....+\frac{2}{x\left(x+1\right)}=\frac{2000}{2002}\)
\(2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.....+\frac{1}{x\left(x+1\right)}\right)=\frac{2000}{2002}\)
\(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2000}{2002}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{2000}{2002}:2=\frac{1000}{2002}\)
=> \(\frac{1}{x+1}=\frac{1}{2}-\frac{1000}{2002}=\frac{1}{2002}\)
=> x + 1 = 2002
=> x = 2002 - 1
=> x = 2001
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right)}=\frac{1999}{2001}\)
\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{1999}{2001}\)
\(2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{1999}{2001}\)
\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1999}{2001}:2=\frac{1999}{4002}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{1999}{4002}\)
\(\frac{1}{x+1}=\frac{1}{2}-\frac{1999}{2001}=\frac{1}{2001}\)
=> x + 1 = 2001
=> x = 2001 - 1
=> x = 2000
\(\Rightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+..+\frac{2}{x\left(x+1\right)}=\frac{1999}{2001}\)
\(2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+..+\frac{1}{x\left(x+1\right)}\right)=\frac{1999}{2001}\)
\(\frac{1}{6}+\frac{1}{12}+..+\frac{1}{x\left(x+1\right)}=\frac{1999}{2001}:\frac{1}{2}\)
\(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{1999}{4002}\)
\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+..+\frac{1}{x}-\frac{1}{x+1}=\frac{1999}{4002}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{1999}{4002}\)
\(\frac{1}{x+1}=\frac{1}{2}-\frac{1999}{4002}\)
\(\frac{1}{x+1}=\frac{1}{2001}\)
=> x + 1 = 2001
=> x = 2001 - 1
=> x = 2000
\(\left(3-x\right)^{10x}:\left(3-x\right)^{10}=1\)
=> \(\left(3-x\right)^{10x-10}=1\)
=> \(\orbr{\begin{cases}3-x=1\\10x-10=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=1\end{cases}}}\)
Ta có:
(3-x)10x:(3-x)10=1
=> 2 số này bằng nhau
=> x=1
+) TH:
cơ số =1
=> x=2
Vậy x E {1;2}