K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2017

Ta có \(\left(x+1\right)^3-\left(x-2\right)^3=\left(2x-1\right)^3\)

\(\Leftrightarrow x^3+3x^2+3x+1-\left(x^3-6x^2+12x-8\right)=8x^3-12x^2+6x-1\)

\(\Leftrightarrow x^3+3x^2=3x+1-x^3+6x^2-12x+8-8x^3+12x^2-6x+1=0\)

\(\Leftrightarrow-8x^3+21x^2-15x+10=0\)

\(\Leftrightarrow-\left(8x^3-16x^2\right)+\left(5x^2-10x\right)-\left(5x-10\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(-8x^2+5x-5\right)=0\Leftrightarrow\orbr{\begin{cases}x=2\\-8x^2+5x-5=0\end{cases}}\)

\(\Leftrightarrow x=2\)vì pt \(-8x^2+5x-5=0\) vô nghiệm vì có \(\Delta=-135< 0\)

Vậy \(x=2\)

1 tháng 7 2016

\(2y\left(2x^2+1\right)-2x\left(2y^2+1\right)+1=x^3y^3\Leftrightarrow4xy\left(x+1\right)-4xy\left(y+1\right)+1=\left(xy\right)^3\)

\(\Leftrightarrow\left(4xy-4xy\right)\left(x+1+y+1\right)+1=\left(xy\right)^3\Rightarrow1=\left(xy\right)^3\Rightarrow xy=1\)

=> x=1;y=1

     x=-1;y=-1

11 tháng 12 2016

a) \(\left(x-2\right)\left(x^2+2x+7\right)+2\left(x^2-4\right)-5\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+7+2x+4-5\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+4x+6\right)=0\)

\(\Leftrightarrow x-2=0\) (Vì: \(x^2+4x+6>0\) )

\(\Leftrightarrow x=2\)

b) \(2x^3+x^2-6x=0\)

\(\Leftrightarrow x\left(2x^2+x-6\right)=0\)

\(\Leftrightarrow x\left[\left(2x^2+4x\right)-\left(3x+6\right)\right]=0\)

\(\Leftrightarrow x\left[2x\left(x+2\right)-3\left(x+2\right)\right]=0\)

\(\Leftrightarrow x\left(x+2\right)\left(2x-3\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x+2=0\\2x-3=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=-2\\x=\frac{3}{2}\end{array}\right.\)

c) \(4x^2+4xy+x^2-2x+1+y^2=0\)

\(\Leftrightarrow\left(4x^2+4xy+y^2\right)+\left(x^2-2x+1\right)=0\)

\(\Leftrightarrow\left(2x+y\right)^2+\left(x-1\right)^2=0\)

\(\Leftrightarrow\begin{cases}2x+y=0\\x-1=0\end{cases}\)\(\Leftrightarrow\begin{cases}y=-2\\x=1\end{cases}\)

17 tháng 8 2016

1,x=6

3,x=-9

4 tháng 9 2017

1)

a) \(x^3-5x^2+x-5=0\Rightarrow x^2.\left(x-5\right)+\left(x-5\right)\)

\(\Rightarrow\left(x^2+1\right).\left(x-5\right)=0\Rightarrow\orbr{\begin{cases}x^2+1=0\\x-5=0\end{cases}\Rightarrow}\orbr{\begin{cases}x^2=-1\left(sai\right)\\x=5\end{cases}}\)\(KL:x=5\)

b) \(x^4-2x^3+10x^2-20x=0\Rightarrow x^3.\left(x-2\right)+10x\left(x-2\right)\)

\(\Rightarrow\left(x-2\right).\left(x^3+10x\right)\Rightarrow\orbr{\begin{cases}x-2=0\\x^3+10x=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=2\\x\left(x^2+10\right)=0\Rightarrow x=0\end{cases}}\)

Vì nếu x2 + 10 = 0 => x2 = -10 ( sai )

Vậy...

26 tháng 11 2017

Bài 1: 

x3+y3=152=> (x+y)(x2-xy+y2)=152

 Mà x2-xy+y2=19

=> 19(x+y)=152=> x+y=8

Ta cũng có x-y=2

=> x=5;y=3

Bài 2: 

x2+4y2+z2=2x+12y-4z-14

=> x2+4y2+z2-2x-12y+4z+14=0

=> (x2-2x+1)+(4y2-12y+9)+(z2+4z+4)=0

=> (x+1)2+(2y-3)2+(z+2)2=0

=> (x+1)2=(2y-3)2=(z+2)2=0

=> x=-1;y=3/2;z=-2

Bài 3\(\left(\frac{1}{x^2+x}-\frac{1}{x+1}\right):\frac{1-2x+x^2}{2014x}=\left(\frac{1}{x\left(x+1\right)}-\frac{1}{x+1}\right):\frac{\left(1-x\right)^2}{2014x}=\frac{1-x}{x\left(x+1\right)}.\frac{2014x}{\left(1-x\right)^2}=\frac{2014}{\left(x+1\right)\left(1-x\right)}=\frac{2014}{1-x^2}\)

21 tháng 11 2015


Với [x>1x<−1] ta có: x3<x3+2x2+3x+2<(x+1)3⇒x3<y3<(x+1)3 (không xảy ra)
Từ đây suy ra −1≤x≤1
Mà x∈Z⇒x∈{−1;0;1}
∙ Với x=−1⇒y=0
∙ Với x=0⇒y=2√3 (không thỏa mãn)
∙ Với x=1⇒y=2
Vậy phương trình có 2 nghiệm nguyên (x;y) là (−1;0) và (1;2) 

  • Oral1020, DarkBlood, trandaiduongbg và 1 người khác yêu thích
7 tháng 1 2019

x=-1,y=0