Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-1\right)^3+\left(x-3\right)^3+8\left(2-x\right)^3=0\)
\(\left(x-1+x-3\right)\left[\left(x-1\right)^2-\left(x-1\right)\left(x-3\right)+\left(x-3\right)^2\right]+\left[2\left(2-x\right)\right]^3=0\)
\(\left(2x-4\right)\left(x^2-2x+1-x^2+4x-3+x^2-4x+4\right)+\left(4-2x\right)^3=0\)
\(\left(2x-4\right)\left(x^2-4x+7\right)-\left(2x-4\right)^3=0\)
\(\left(2x-4\right)\left[x^2-4x+7-\left(2x-4\right)^2\right]=0\)
\(2\left(x-2\right)\left(x^2-4x+7-4x^2+16x-16\right)=0\)
\(2\left(x-2\right)\left(12x-3x^2-9\right)=0\)
\(6\left(x-2\right)\left(4x-x^2-3\right)=0\)
\(6\left(x-2\right)\left(3x-x^2+x-3\right)=0\)
\(6\left(x-2\right)\left[x\left(3-x\right)-\left(3-x\right)\right]=0\)
\(6\left(x-2\right)\left(3-x\right)\left(x-1\right)=0\)
\(\Rightarrow x=\left\{1;2;3\right\}\)
\(\left(x-1\right)^3+\left(x-3\right)^3+8\left(2-x\right)^3=0\)
\(\Rightarrow x^3-2x^2+x-x^2+2x+1+x^3-6x^2+9x-3x^2+18x-27+64-64x+16x^2-32x+32x^2-8x^3=0\)
\(\Rightarrow-6x^3+36x^2-66x+36=0\)
\(\Rightarrow-6\left(x^3-6x^2+11x-6\right)=0\)
\(\Rightarrow\left(x^2-5x+6\right)\left(x-1\right)=0\)
\(\Rightarrow\left(x-3\right)\left(x-2\right)\left(x-1\right)=0\)
=> x - 3 = 0 ; x - 2 = 0 hoặc x - 1 = 0
=> x = 3 ; x = 2 hoặc x = 1
bài này dễ ẹt ak
nhưng giúp mình bài này đi
chotam giac abc . co canh bc=12cm, duong cao ah=8cm
a> tinh s tam giac abc
b> tren canh bc lay diem e sao cho be=3/4bc. tinh s tam giac abe va s tam giac ace ( bằng nhiều cách )
c> lay diem chinh giua cua canh ac va m . tinh s tam giac ame
voi x<0 thi bieu thuc tro thanh -x -3(1-x)=-13
<=> -x-3+3x=-13
<=>2x=-10
<=>x=-5 ( tmdk)
ta khong xet truong hop >=0 vi de bai yeu cau tim x<0
a) \(6xy+4x-9y-7=0\)
\(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)
\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)
\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)
Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)
Tự làm típ
\(A=x^3+y^3+xy\)
\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)
\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))
\(A=x^2+y^2\)
Áp dụng bất đẳng thức Bunhiakovxky ta có :
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)
\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)
Hay \(x^3+y^3+xy\ge\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
\(\left(x-3\right)^3+\left(x+1\right)^3+8\left(1-x\right)^3=0\)
\(\Leftrightarrow x^3-9x^2+27x-27+x^3+3x^2+3x+1+8\left(1-3x+3x^2-x^3\right)=0\)
\(\Leftrightarrow2x^3-6x^2+30x-26+8-24x+24x^2-8x^3=0\)
\(\Leftrightarrow-6x^3+18x^2+6x-18=0\)
\(\Leftrightarrow-6\left(x^3-3x^2-x+3\right)=0\)
\(\Leftrightarrow x^3-3x^2-x+3=0\)
\(\Leftrightarrow x^2\left(x-3\right)-\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x^2-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=\sqrt{1}\end{cases}}}\)
#H