K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2019

\(x^2+y^2=6\left(x-y-3\right)\)\(\Rightarrow x^2+y^2-6\left(x-y-3\right)=0\)

\(\Leftrightarrow x^2+y^2-6x+6y+18=0\)\(\Leftrightarrow\left(x^2-6x+9\right)+\left(y^2+6x+9\right)=0\)

\(\Leftrightarrow\left(x-3\right)^2+\left(y+3\right)^2=0\)(1)

Vì \(\hept{\begin{cases}\left(x-3\right)^2\ge0\forall x\\\left(y+3\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x-3\right)^2+\left(y+3\right)^2\ge0\forall x,y\)(2)

Từ (1) và (2) \(\Rightarrow\left(x-3\right)^2+\left(y+3\right)^2=0\Leftrightarrow\hept{\begin{cases}x-3=0\\y+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=-3\end{cases}}\)

\(\Rightarrow M=3^{2019}+\left(-3\right)^{2019}+\left(3-3\right)^{2020}=0\)

19 tháng 12 2019

\(Ta \) \(có : \) \(x ^2 + y^2 = 6. ( x - y - 3 )\)

\(\Leftrightarrow\)\(x^2 + y^2 - 6. ( x - y - 3 ) = 0\)

\(\Leftrightarrow\)\(x^2 + y^2 - 6x + 6y + 18 = 0\)

\(\Leftrightarrow\)\(( x^2 - 6x + 9 ) + ( y^2 + 6y + 9 ) = 0\)

\(\Leftrightarrow\)\(( x - 3 )^2 + ( y + 3 )^2 = 0\)

\(\Leftrightarrow\)\(( x - 3 )^2 = 0 \) \(và \) \(( y - 3 )^2 = 0\)

\(\Leftrightarrow\)\(x - 3 = 0 \) \(và \) \(y + 3 = 0\)

\(\Leftrightarrow\)\(x = 3 \) \(và \) \(y = - 3\)

\(Thay\) \(x = 3 ; y = - 3 \) \(vào \) \(M \)\(ta \) \(được :\)

\(M = 3\)\(2019\) \(+ (- 3 )\)\(2019\) \(+ [ 3 + ( - 3 ) ]\)\(2020\)

\(M = 0 \)

21 tháng 12 2021

a: \(M=\dfrac{x^2-3x+2x^2+6x-3x^2-9}{\left(x-3\right)\left(x+3\right)}=\dfrac{3}{x+3}\)

21 tháng 12 2021

câu b c d e đâu anh ơi

 

2 tháng 2 2022

\(\Rightarrow x+1+2x-2020=3x-2019\Leftrightarrow3x-2019=3x-2019\)

Vậy pt có vô số nghiệm 

3 tháng 2 2022

undefined

21 tháng 11 2015


Với [x>1x<−1] ta có: x3<x3+2x2+3x+2<(x+1)3⇒x3<y3<(x+1)3 (không xảy ra)
Từ đây suy ra −1≤x≤1
Mà x∈Z⇒x∈{−1;0;1}
∙ Với x=−1⇒y=0
∙ Với x=0⇒y=2√3 (không thỏa mãn)
∙ Với x=1⇒y=2
Vậy phương trình có 2 nghiệm nguyên (x;y) là (−1;0) và (1;2) 

  • Oral1020, DarkBlood, trandaiduongbg và 1 người khác yêu thích
7 tháng 1 2019

x=-1,y=0