
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Bài 1 :
a) (3a+4b)3+(3a-4b)3-48a2b2
=27a3+108a2b+144ab2+64b3+27a3-108a2b+144ab2-64b3-48a2b2
=54a3+288ab2-48a2b2
=2a(27a2+144b2-24ab)
b) (5x+2y)(5x-2y)+(2x-y)3+(2x+y)3
=25x2-4y2+8x3-12x2y+6xy2-y3+8x3+12x2y+6xy2+y3
=16x3+25x2-y2+12xy2
=x2(16x+25)-y2(1-12x)
Bài 2 :
\(x^2-8x+7=0\)
\(\Leftrightarrow x^2-x-7x+7=0\)
\(\Leftrightarrow\left(x-7\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-7=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\x=7\end{cases}}\)
b)\(x^3-4x^2+3x=0\)
\(\Leftrightarrow\left(x^2-3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-3=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\pm\sqrt{3}\\x=1\end{cases}}\)
c)Nếu đề đổi thành =1 thì có vẻ hợp lí hơn
d)\(\left(3x-1\right)^3-3\left(3x+2\right)^2+13=0\)
\(\Leftrightarrow27x^3-27x^2+9x-1-3\left(9x^2+12x+4\right)+13=0\)
\(\Leftrightarrow27x^3-27x^2+9x-1-27x^2-36x-12+13=0\)
\(\Leftrightarrow27x^3-54x^2-27x=0\)
\(\Leftrightarrow27x\left(x^2-2x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}27x=0\\x^2-2x-1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\-\left(x^2+2x+1\right)=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\-\left(x+1\right)^2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
#H

b, ( x2 + x ) ( x2 + x + 1 )=6
=> ( x2 + x ) ( x2 + x + 1) - 6 = 0
=> ( x - 1 ) ( x + 2 ) ( x2 + x +3 ) = 0
=> x - 1= 0 => x= 1
=> x + 2 = 0 => x = -2
=> x2 + x + 3 = 0 => 12 - 4 ( 1.3 ) = -11 ( vô lí )
Vậy x = 1; x= -2
a) \(2x^3-x^2+3x+6=0\)
\(\left(2x^3-x^2\right)+\left(3x+6\right)=0\)
\(x^2\left(2-x\right)-3\left(2-x\right)=0\)
\(\left(x^2-3\right)\left(2-x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2-3=0\\2-x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\sqrt{3}\\x=2\end{cases}}\)\(\)
vậy \(\orbr{\begin{cases}x=\sqrt{3}\\x=2\end{cases}}\)

\(\frac{3a^3\left(x^2-1\right)^4}{3a^3\left(x^2-1\right)^3}=15\)
\(x^2-1=15\)
\(x^2=15+1\)
\(x^2=16\)
\(x^2=\left(\pm4\right)^2\)
\(x=\pm4\)
\(\frac{3x^5-4x^3}{x^3}-\frac{\left(3x+1\right)^3}{3x+1}-\frac{3x^7}{x^5}=0\)
\(\frac{x^3\left(3x^2-4\right)}{x^3}-\left(3x+1\right)^2-3x^2=0\)
\(3x^2-4-\left(3x+1\right)^2-3x^2=0\)
\(-4-\left(3x+1\right)^2=0\)
Không tìm được x thoả mãn yêu cầu vì \(-4-\left(3x+1\right)^2\le-4< 0\)
\(\frac{x^2+\frac{1}{2}x}{\frac{1}{2}x}-\frac{\left(2x+1\right)^3}{\left(2x+1\right)^2}+\frac{\left(x+1\right)^5}{\left(x+1\right)^2}=0\)
\(\frac{\frac{1}{2}x\left(2x+1\right)}{\frac{1}{2}x}-\left(2x+1\right)+\left(x+1\right)^3=0\)
\(\left(2x+1\right)-\left(2x+1\right)+\left(x+1\right)^3=0\)
\(x+1=0\)
\(x=-1\)

Trả lời
Cả 2 phần a và b bạn nhân hết vế trái ra nhé
Rồi sử dụng phép cân bằng hệ số sẽ tìm ra đc hệ số a,b,c
Study well
Lời giải:
PT \(\Leftrightarrow x^2-x(2a+1)-(3a^2-11a+6)=0\)
\(\Delta=(2a+1)^2+4(3a^2-11a+6)=16a^2-40a+25\)
\(=(4a-5)^2\)
Khi đó:
\(x=\frac{-b\pm \sqrt{\Delta}}{2a}=\left[\begin{matrix} \frac{2a+1+4a-5}{2}=3a-2\\ \frac{2a+1+5-4a}{2}=3-a\end{matrix}\right.\)