K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
1 tháng 3 2019

Lời giải:

PT \(\Leftrightarrow x^2-x(2a+1)-(3a^2-11a+6)=0\)

\(\Delta=(2a+1)^2+4(3a^2-11a+6)=16a^2-40a+25\)

\(=(4a-5)^2\)

Khi đó:

\(x=\frac{-b\pm \sqrt{\Delta}}{2a}=\left[\begin{matrix} \frac{2a+1+4a-5}{2}=3a-2\\ \frac{2a+1+5-4a}{2}=3-a\end{matrix}\right.\)

29 tháng 7 2021

Bài 1 :

a) (3a+4b)3+(3a-4b)3-48a2b2

=27a3+108a2b+144ab2+64b3+27a3-108a2b+144ab2-64b3-48a2b2

=54a3+288ab2-48a2b2

=2a(27a2+144b2-24ab)

b) (5x+2y)(5x-2y)+(2x-y)3+(2x+y)3

=25x2-4y2+8x3-12x2y+6xy2-y3+8x3+12x2y+6xy2+y3

=16x3+25x2-y2+12xy2

=x2(16x+25)-y2(1-12x)

29 tháng 7 2021

Bài 2 :

\(x^2-8x+7=0\)

\(\Leftrightarrow x^2-x-7x+7=0\)

\(\Leftrightarrow\left(x-7\right)\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-7=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\x=7\end{cases}}\)

b)\(x^3-4x^2+3x=0\)

\(\Leftrightarrow\left(x^2-3\right)\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-3=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\pm\sqrt{3}\\x=1\end{cases}}\)

c)Nếu đề đổi thành =1 thì có vẻ hợp lí hơn

d)\(\left(3x-1\right)^3-3\left(3x+2\right)^2+13=0\)

\(\Leftrightarrow27x^3-27x^2+9x-1-3\left(9x^2+12x+4\right)+13=0\)

\(\Leftrightarrow27x^3-27x^2+9x-1-27x^2-36x-12+13=0\)

\(\Leftrightarrow27x^3-54x^2-27x=0\)

\(\Leftrightarrow27x\left(x^2-2x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}27x=0\\x^2-2x-1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\-\left(x^2+2x+1\right)=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\-\left(x+1\right)^2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)

#H

22 tháng 8 2017

b, ( x+ x ) ( x+ x + 1 )=6

=> ( x+ x ) ( x+ x + 1) - 6 = 0

=> ( x - 1 ) ( x + 2 ) ( x2 + x +3 ) = 0

=> x - 1= 0 => x= 1

=> x + 2 = 0 => x = -2

=>  x + x + 3 = 0 => 12 - 4 ( 1.3 ) = -11 ( vô lí )

Vậy x = 1; x= -2

21 tháng 11 2017

a) \(2x^3-x^2+3x+6=0\)

\(\left(2x^3-x^2\right)+\left(3x+6\right)=0\)

\(x^2\left(2-x\right)-3\left(2-x\right)=0\)

\(\left(x^2-3\right)\left(2-x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x^2-3=0\\2-x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\sqrt{3}\\x=2\end{cases}}\)\(\)

           vậy \(\orbr{\begin{cases}x=\sqrt{3}\\x=2\end{cases}}\)

15 tháng 10 2016

\(\frac{3a^3\left(x^2-1\right)^4}{3a^3\left(x^2-1\right)^3}=15\)

\(x^2-1=15\)

\(x^2=15+1\)

\(x^2=16\)

\(x^2=\left(\pm4\right)^2\)

\(x=\pm4\)

\(\frac{3x^5-4x^3}{x^3}-\frac{\left(3x+1\right)^3}{3x+1}-\frac{3x^7}{x^5}=0\)

\(\frac{x^3\left(3x^2-4\right)}{x^3}-\left(3x+1\right)^2-3x^2=0\)

\(3x^2-4-\left(3x+1\right)^2-3x^2=0\)

\(-4-\left(3x+1\right)^2=0\)

Không tìm được x thoả mãn yêu cầu vì \(-4-\left(3x+1\right)^2\le-4< 0\)

\(\frac{x^2+\frac{1}{2}x}{\frac{1}{2}x}-\frac{\left(2x+1\right)^3}{\left(2x+1\right)^2}+\frac{\left(x+1\right)^5}{\left(x+1\right)^2}=0\)

\(\frac{\frac{1}{2}x\left(2x+1\right)}{\frac{1}{2}x}-\left(2x+1\right)+\left(x+1\right)^3=0\)

\(\left(2x+1\right)-\left(2x+1\right)+\left(x+1\right)^3=0\)

\(x+1=0\)

\(x=-1\)

25 tháng 8 2019

Trả lời

Cả 2 phần a và b bạn nhân hết vế trái ra nhé

Rồi sử dụng phép cân bằng hệ số sẽ tìm ra đc hệ số a,b,c

Study well 

25 tháng 8 2019

Giải chi tiết đc ko ak???