\(\sqrt{x-2+2\sqrt{ }x-3}\) + \(\sqrt{x+6+6+\sqrt{x...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2017

\(\sqrt{9x^2-6x+1}+\sqrt{25-30x+9x^2}\)

\(=\sqrt{\left(3x-1\right)^2}+\sqrt{\left(5-3x\right)^2}\)

\(=\left|3x-1\right|+\left|5-3x\right|\)

\(\ge\left|3x-1+5-3x\right|=4\)

27 tháng 6 2018

a)\(\sqrt{3x+2}=2-\sqrt{3}\)

\(\Leftrightarrow3x+2=\left(2-\sqrt{3}\right)^2\)

\(\Leftrightarrow3x+2=7-4\sqrt{3}\)

\(\Leftrightarrow3x=7-2-4\sqrt{3}\)

\(\Leftrightarrow3x=5-4\sqrt{3}\)

\(\Leftrightarrow x=\dfrac{5}{3}-\dfrac{4\sqrt{3}}{3}\)

\(\Leftrightarrow x=\dfrac{5-4\sqrt{3}}{3}\)

b) \(\sqrt{x^2-4x+4}=49\)

\(\Leftrightarrow\sqrt{\left(x-2\right)^2}=49\)

\(\Leftrightarrow\left|x-2\right|=49\)\

\(\Leftrightarrow\left[{}\begin{matrix}x-2=49\\-x+2=49\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=51\\x=-47\end{matrix}\right.\)

27 tháng 6 2018

c) \(\sqrt{x+1}=x-1\)

ĐKXĐ: \(x-1\ge0\Rightarrow x\ge1\)

\(\Leftrightarrow x+1=\left(x-1\right)^2\)

\(\Leftrightarrow x+1=x^2-2x+1\)

\(\Leftrightarrow-x^2+2x+x=-1+1\)

\(\Leftrightarrow3x-x^2=0\)

\(\Leftrightarrow x\left(3-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\3-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(lo\text{ại}\right)\\x=3\left(nh\text{ậ}n\right)\end{matrix}\right.\)

d)e) lát mình làm sau

a) giải pt ra ta được  : x=-1

b) giải pt ra ta được  : x=2

c)giải pt ra ta được  : x vô ngiệm

d)giải pt ra ta được  : x=vô ngiệm

~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~

~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~

AH
Akai Haruma
Giáo viên
14 tháng 10 2018

1)

ĐK: \(x\geq 5\)

PT \(\Leftrightarrow \sqrt{4(x-5)}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9(x-5)}=6\)

\(\Leftrightarrow \sqrt{4}.\sqrt{x-5}+3\sqrt{\frac{1}{9}}.\sqrt{x-5}-\frac{1}{3}.\sqrt{9}.\sqrt{x-5}=6\)

\(\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=6\)

\(\Leftrightarrow 2\sqrt{x-5}=6\Rightarrow \sqrt{x-5}=3\Rightarrow x=3^2+5=14\)

AH
Akai Haruma
Giáo viên
14 tháng 10 2018

2)

ĐK: \(x\geq -1\)

\(\sqrt{x+1}+\sqrt{x+6}=5\)

\(\Leftrightarrow (\sqrt{x+1}-2)+(\sqrt{x+6}-3)=0\)

\(\Leftrightarrow \frac{x+1-2^2}{\sqrt{x+1}+2}+\frac{x+6-3^2}{\sqrt{x+6}+3}=0\)

\(\Leftrightarrow \frac{x-3}{\sqrt{x+1}+2}+\frac{x-3}{\sqrt{x+6}+3}=0\)

\(\Leftrightarrow (x-3)\left(\frac{1}{\sqrt{x+1}+2}+\frac{1}{\sqrt{x+6}+3}\right)=0\)

\(\frac{1}{\sqrt{x+1}+2}+\frac{1}{\sqrt{x+6}+3}>0, \forall x\geq -1\) nên $x-3=0$

\(\Rightarrow x=3\) (thỏa mãn)

Vậy .............

Y
22 tháng 5 2019

a) \(\Leftrightarrow\sqrt{\left(x+3\right)^2}=4\)

\(\Leftrightarrow\left|x+3\right|=4\) \(\Leftrightarrow\left[{}\begin{matrix}x+3=4\\x+3=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-7\end{matrix}\right.\) ( TM )

b) \(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=5x+3\)

\(\Leftrightarrow\left|2x-1\right|=5x+3\)

\(\Leftrightarrow\left\{{}\begin{matrix}5x+3\ge0\\\left[{}\begin{matrix}2x-1=5x+3\\2x-1=-5x-3\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-\frac{3}{5}\\\left[{}\begin{matrix}x=-\frac{4}{3}\left(KTM\right)\\x=-\frac{2}{7}\left(TM\right)\end{matrix}\right.\end{matrix}\right.\)

22 tháng 5 2019

a \(\sqrt{x^2+6x+9}=4\Leftrightarrow\sqrt{\left(x+3\right)^2=4}\)

\(\Leftrightarrow x+3=4\)

\(\Rightarrow x=1\)

15 tháng 8 2020

a,\(\left(a\right)\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x>-2\\x+1< x^2+4x+4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x^2+3x+3>0\end{matrix}\right.\)

\(x^2+3x+3>0\forall x\in R\) (Kết hợp ĐK)

Vậy \(x\ge-1\)

b,\(\left(b\right)\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< 6\\x^2-6x+9\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x\ge6\\x^2-6x+9>x^2-12x+36\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x< 6\\\left\{{}\begin{matrix}x\ge6\\6x>27\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x< 6\\x\ge6\end{matrix}\right.\) \(\Rightarrow T=R\)

c,\(\left(c\right)\Leftrightarrow\sqrt{\left(x-1\right)^2}+3\sqrt{\left(x-5\right)^2}=1\)

\(\Leftrightarrow\left|x-1\right|+3\left|x-5\right|=1\)

Đến đây bạn xét khoảng nhé.

d, \(\left\{{}\begin{matrix}4x^2-8x+3\ge0\\9x^2-6x+1\ge0\end{matrix}\right.\) (*)

\(\left(d\right)\Leftrightarrow\sqrt{4x^2-8x+3}=\sqrt{9x^2-6x+1}\)

\(\Leftrightarrow4x^2-8x+3=9x^2-6x+1\)

\(\Leftrightarrow5x^2+2x-2=0\)

\(\Leftrightarrow x=\frac{-1\pm\sqrt{11}}{5}\) (tm)

Vậy...

7 tháng 5 2018

a)\(\sqrt{4x}< =10\)

<=> 4x       <= 100                   

<=>  x     <= 25

b) \(\sqrt{9x}>=3\)

<=> 9x   >= 9

<=> x  >= 1

c) \(\sqrt{4x^2+4x+1}=6\)

<=>\(\sqrt{\left(2x\right)^2+2\left(2x\right).1+1^2}=6\)

<=>\(\sqrt{\left(2x+1\right)^2}=6\)

<=>\(|2x+1|=6\)

<=>\(\orbr{\begin{cases}2x+1=6\\2x+1=-6\end{cases}}\)

<=>\(\orbr{\begin{cases}2x=5\\2x=-7\end{cases}}\)

<=>\(\orbr{\begin{cases}x=\frac{5}{2}\\x=\frac{-7}{2}\end{cases}}\)

d)\(\sqrt{9x-9}-2\sqrt{x-1}=6\)

<=>\(\sqrt{9\left(x-1\right)}-2\sqrt{x-1}=6\)

<=>\(3\sqrt{x-1}-2\sqrt{x-1}=6\)

<=>\(\sqrt{x-1}=6\)

<=> x - 1       =     36

<=> x           =    37

f) \(\sqrt{2x+1}=\sqrt{x-1}\)

<=> 2x + 1         =   x -1

<=> 2x - x            = -1 -1

<=>  x                 = -2

g)\(\sqrt{x^2-x-1}=\sqrt{x-1}\)

<=>x2 -x  -1               = x -1

<=> x2 -x-x-1+1           = 0

<=> x2  - 2x  + 0           = 0

<=> x(x-2)                 = 0

<=>\(\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)

<=>\(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

8 tháng 5 2018

thanks bạn đã giúp mình 

15 tháng 7 2017

Đăng 1 lúc mà nhiều thế. Lần sau đăng 1 câu thôi b.

b/ \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)

\(\Leftrightarrow\sqrt{\left(x-2\right)^2+1}+\sqrt{\left(x-2\right)^2+4}+\sqrt{\left(x-2\right)^2+5}=3+\sqrt{5}\)

Ta có: \(VT\ge1+2+\sqrt{5}=3+\sqrt{5}\)

Dấu = xảy ra khi \(x=2\)

c/ \(\sqrt{2-x^2+2x}+\sqrt{-x^2-6x-8}=\sqrt{3-\left(x-1\right)^2}+\sqrt{1-\left(x+3\right)^2}\)

\(\le1+\sqrt{3}\)

Dấu = không xảy ra nên pt vô nghiệm

Câu d làm tương tự

15 tháng 7 2017

\(a,\sqrt{x^2-4}-x^2+4=0\) 

\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\) 

\(\Leftrightarrow x^2-4=\left(x-4\right)^2\) 

\(\Leftrightarrow x^2-4-x^4+8x^2-16=0\)  

\(\Leftrightarrow-x^4-7x^2-20=0\) 

\(\Leftrightarrow-\left(x^4+7x^2+\frac{49}{4}\right)-\frac{31}{4}=0\) 

\(\Leftrightarrow-\left(x^2+\frac{7}{2}\right)^2=\frac{31}{4}\) 

\(\Leftrightarrow\left(x^2+\frac{7}{2}\right)=-\frac{31}{4}\) 

\(\Rightarrow\)pt vô nghiệm

18 tháng 7 2017

1)

a)

\(\sqrt{11-6\sqrt{2}}=\sqrt{2-2.3.\sqrt{2}+9}=\left|\sqrt{2}-3\right|=3-\sqrt{2}\)

\(A=3-\sqrt{2}+3+\sqrt{2}=6\)

b)

\(B^2=24+2\sqrt{12^2-4.11}=24+2\sqrt{100}=24+20=44\)

\(B=\sqrt{44}=2\sqrt{11}\)