Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để A có giá trị nguyên thì 2x+3 phải chia hết cho x-1
=>2(x-1)+5 chia hết cho x-1
=>x-1 thuộc Ư(5)={1;5;-1;-5}
+, x-1=1 =>x=2
+,....
Còn lại tự làm nha bn
a, để 2x + 3/x - 1 nguyên
=> 2x + 3 ⋮ x - 1
=> 2x - 2 + 5 ⋮ x - 1
=> 2(x - 1) + 5 ⋮ x - 1
=> 5 ⋮ x - 1
=> x - 1 thuộc Ư(5)
=> x - 1 thuộc {-1; 1; -5; 5}
=> x thuộc {0; 2; -4; 6}
b, đề 3x - 4/x + 1 nguyên
=> 3x - 4 ⋮ x + 1
=> 3x + 3 - 7 ⋮ x + 1
=> 3(x + 1) - 7 ⋮ x + 1
=> 7 ⋮ x + 1
x-3=k^2
x=k^2+3
x+1-k=t^2
k^2+4-k=t^2
(2k-1)^2+15=4t^2
(2k-1-2t)(2k-1+2t)=-15=-1.15=-3*5
---giải phương trình nghiệm nguyên với k,t---
TH1. [2(k-t)-1][2(k+t)-1]=-1.15
2(k-t)-1=-1=> k=t
4t-1=15=>t=4 nghiệm (-4) loại luôn
với k=4=> x=19 thử lại B=căn (19+1-can(19-3))=can(20-4)=4 nhận
TH2. mà có bắt tìm hết đâu
x=19 ok rồi
ô hay vừa giải xong mà
x=k^2+3
với k là nghiệm nguyên của phương trình
k^2-k+4=t^2
bắt tìm hết hạy chỉ một
x=19 là một nghiệm
a) Ta có: \(M=\dfrac{8x+1}{4x-5}=\dfrac{8x-10+11}{4x-5}=\dfrac{2\left(x-5\right)+11}{4x-5}=2+\dfrac{11}{4x-5}\)
Để M nhận giá trị nguyên thì \(2+\dfrac{11}{4x-5}\) nhận giá trị nguyên
\(\Rightarrow\dfrac{11}{4x-5}\) nhận giá trị nguyên
\(\Rightarrow11⋮4x-5\)
Vì \(x\in Z\) nên \(4x-5\in Z\)
\(\Rightarrow4x-5\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
\(\Rightarrow x\in\left\{1;\pm1,5;4\right\}\)
Vậy \(x\in\left\{1;4\right\}\) thỏa mãn \(x\in Z\).
b) Ta có: \(A=\dfrac{5}{4-x}\). ĐK: \(x\ne4\)
Nếu 4 - x < 0 thì x > 4 \(\Rightarrow A>0\)
4 - x > 0 thì x < 4 \(\Rightarrow A< 0\)
Để A đạt GTLN thì 4 - x là số nguyên dương nhỏ nhất
\(\Rightarrow4-x=1\Rightarrow x=3\)
\(\Rightarrow A=\dfrac{5}{4-3}=5\)
Vậy MaxA = 5 tại x = 3
c) \(B=\dfrac{8-x}{x-3}\). ĐK: \(x\ne3\).
Ta có: \(B=\dfrac{8-x}{x-3}=\dfrac{-\left(x-8\right)}{x-3}=\dfrac{-\left(x-3\right)+5}{x-3}=\dfrac{5}{x-3}-1\)
Để B đạt giá trị nhỏ nhất thì \(\dfrac{5}{x-3}-1\) nhỏ nhất
\(\Rightarrow\dfrac{5}{x-3}\) nhỏ nhất
Nếu x - 3 > 0 thì x > 3 \(\Rightarrow\dfrac{5}{x-3}>0\)
x - 3 < 0 thì x < 3 \(\Rightarrow\dfrac{5}{x-3}< 0\)
Để \(\dfrac{5}{x-3}\) nhỏ nhất thì x - 3 là số nguyên âm lớn nhất
\(\Rightarrow x-3=-1\Rightarrow x=2\)
\(\Rightarrow B=\dfrac{8-2}{2-3}=-6\)
Vậy MaxB = -6 tại x = 2.
Mình làm sai câu a...
Ta có: \(M=\dfrac{8x+1}{4x-1}=\dfrac{8x-2+3}{4x-1}=\dfrac{2\left(4x-1\right)+3}{4x-1}=2+\dfrac{3}{4x-1}\)
Để M nhận giá trị nguyên thì \(2+\dfrac{3}{4x-1}\) nhận giá trị nguyên
\(\Rightarrow\dfrac{3}{4x-1}\) nhận giá trị nguyên
Vì \(4x-1\in Z\) nên \(4x-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow x\in\left\{\pm0,5;0;1\right\}\)
Vậy \(x\in\left\{0;1\right\}\) thỏa mãn \(x\in Z\).
2. Câu hỏi của Hoàng Lê Như Ý - Toán lớp 6 - Học toán với OnlineMath
2/
Để 6x + 5/2x - 1 đạt giá trị nguyên thì:
6x + 5 chia hết cho 2x - 1
=> (6x - 3) + 8 chia hết cho 2x - 1
=> [3(2x - 1)] + 8 chia hết cho 2x - 1
Vì 2x - 1 chia hết cho 2x - 1
=> [3(2x - 1)] chia hết cho 2x - 1
=> 8 chia hết cho 2x - 1
Hay 2x - 1 thuộc Ư(8) = {1;-1;2;-2;4;-4;8;-8}
=> 2x thuộc {2;0;3;-1;5;-3;9;-7}
=> x thuộc {1;0;3/2;-1/2;5/2;-3/2;9/2;-7/2}
Mà x thuộc Z
Do đó: x thuộc {1;0}
*tk giúp mình nhá 😉*
\(a,\frac{-24}{x}+\frac{18}{x}=\frac{-24+18}{x}=\frac{-6}{x}\)
\(\Leftrightarrow x\inƯ(-6)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
\(b,\frac{2x-5}{x+1}=\frac{2x+2-7}{x+1}=\frac{2(x+1)-7}{x+1}=2-\frac{7}{x+1}\)
\(\Leftrightarrow7⋮x+1\Leftrightarrow x+1\inƯ(7)=\left\{\pm1;\pm7\right\}\)
Xét các trường hợp rồi tìm được x thôi :>
\(c,\frac{3x+2}{x-1}-\frac{x-5}{x-1}=\frac{3x+2-x-5}{x-1}=\frac{2x+7}{x-1}=\frac{2x-2+9}{x-1}=\frac{2(x-1)+9}{x-1}=2+\frac{9}{x-1}\)
\(\Leftrightarrow9⋮x-1\Leftrightarrow x-1\inƯ(9)=\left\{\pm1;\pm3;\pm9\right\}\)
\(\Leftrightarrow x\in\left\{2;0;4;-2;10;-8\right\}\)
d, TT
\(ĐK:x\ne1\)
Để \(A=\frac{5}{x-1}\)là số nguyên
\(\Leftrightarrow5⋮x-1\)
\(\Leftrightarrow x-1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Leftrightarrow x\in\left\{0;2;-4;6\right\}\)
Để \(B=\frac{x+2}{x-1}\)là số nguyên
\(\Leftrightarrow x+2⋮x-1\)
\(\Leftrightarrow x-1+3⋮x-1\)
\(\Leftrightarrow3⋮x-1\)
\(\Leftrightarrow x-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Leftrightarrow x\in\left\{0;2;-2;4\right\}\)
Vậy để A và B cùng là số nguyên thì \(x\in\left\{0;2\right\}\)
Trả lời :
Mình làm thế này nè sai thì thuii nhé :)
a ) Để \(\frac{5}{x-1}\) \(\varepsilon\) \(ℤ\) thì => 5 phải chia hết cho ( x-1 ) hay x - 1 = Ư(5) = { - 1 ; 1 ; 5 ; -5 }
Ta có bảng sau :
b ) Để \(\frac{x+2}{x-1}\) \(\varepsilon\) \(ℤ\) thì \(\frac{3}{x-2}\) phải \(\varepsilon\) \(ℤ\) => 3 phải chia hết cho ( x - 1 ) và x \(\ne\) 1
+ => x - 1 = Ư(3) = { 1 ; - 1 ; 3 ; -3 }
Chúc bạn học tốt <3