Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(\dfrac{1}{2}x+\dfrac{3}{5}x=\dfrac{-33}{25}\)
\(\Rightarrow\dfrac{11}{10}x=\dfrac{-33}{25}\)
\(\Rightarrow x=\dfrac{-33}{25}:\dfrac{11}{10}=\dfrac{-6}{5}\)
Vậy.........
b. \(\left(\dfrac{2}{3}x-\dfrac{4}{9}\right)\left(\dfrac{1}{2}+\dfrac{-3}{7}:x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{2}{3}x-\dfrac{4}{9}=0\\\dfrac{1}{2}+\dfrac{-3}{7}:x=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\dfrac{2}{3}x=\dfrac{4}{9}\\\dfrac{-3}{7}:x=\dfrac{-1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=\dfrac{6}{7}\end{matrix}\right.\)
Vậy................
a: 1-2x<7
=>-2x<6
hay x>-3
b: (x-1)(x-2)>0
=>x-2>0 hoặc x-1<0
=>x>2 hoặc x<1
c: \(\left(x-2\right)^2\cdot\left(x+1\right)\left(x-4\right)< 0\)
=>(x+1)(x-4)<0
=>-1<x<4
1.a)\(2.x-\dfrac{5}{4}=\dfrac{20}{15}\)
\(\Leftrightarrow2.x=\dfrac{20}{15}+\dfrac{5}{4}=\dfrac{4}{3}+\dfrac{5}{4}=\dfrac{16+15}{12}=\dfrac{31}{12}\)
\(\Leftrightarrow x=\dfrac{31}{12}:2=\dfrac{31}{12}.\dfrac{1}{2}=\dfrac{31}{24}\)
b)\(\left(x+\dfrac{1}{3}\right)^3=\left(-\dfrac{1}{8}\right)\)
\(\Leftrightarrow\left(x+\dfrac{1}{3}\right)^3=\left(-\dfrac{1}{2}\right)^3\)
\(\Leftrightarrow x+\dfrac{1}{3}=-\dfrac{1}{2}\)
\(\Leftrightarrow x=-\dfrac{1}{2}-\dfrac{1}{3}=-\dfrac{5}{6}\)
2.Theo đề bài, ta có: \(\dfrac{a}{2}=\dfrac{b}{3}\) và \(a+b=-15\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{a+b}{2+3}=\dfrac{-15}{5}=-3\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{2}=-3\Rightarrow a=-6\\\dfrac{b}{3}=-3\Rightarrow b=-9\end{matrix}\right.\)
3.Ta xét từng trường hợp:
-TH1:\(\left\{{}\begin{matrix}x+1>0\\x-2< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x>-1\\x< 2\end{matrix}\right.\)\(\Rightarrow x\in\left\{0;1\right\}\)
-TH2:\(\left\{{}\begin{matrix}x+1< 0\\x-2>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x< -1\\x>2\end{matrix}\right.\)\(\Rightarrow x\in\varnothing\)
Vậy \(x\in\left\{0;1\right\}\)
4.\(B=\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{9}{49}\right)^9=\left(\dfrac{3}{7}\right)^{21}:\left[\left(\dfrac{3}{7}\right)^2\right]^9=\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{3}{7}\right)^{18}=\left(\dfrac{3}{7}\right)^3=\dfrac{27}{343}\)
3: \(\left|x-\dfrac{3}{4}\right|-\dfrac{1}{2}=0\)
\(\Leftrightarrow\left|x-\dfrac{3}{4}\right|=\dfrac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{3}{4}=\dfrac{1}{2}\\x-\dfrac{3}{4}=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{4}\\x=\dfrac{1}{4}\end{matrix}\right.\)
a: \(\left(x-2\right)^2\cdot\left(x+1\right)\left(x-4\right)< 0\)
\(\Leftrightarrow\left(x+1\right)\left(x-4\right)< 0\)
=>-1<x<4
b: \(\dfrac{x^2\left(x-3\right)}{x-9}< 0\)
\(\Leftrightarrow\dfrac{x-3}{x-9}< 0\)
=>3<x<9
a: -2x+1<7
=>-2x<6
hay x>-3
b: (x-1)(x-2)>0
=>x-2>0 hoặc x-1<0
=>x>2 hoặc x<1
c: \(\left(x-2\right)^2\left(x+1\right)\left(x-4\right)< 0\)
=>(x+1)(x-4)<0
=>-1<x<4
d: \(\dfrac{x^2\left(x-3\right)}{x-9}< 0\)
\(\Leftrightarrow\dfrac{x-3}{x-9}< 0\)
=>3<x<9
a: \(x=\left(-\dfrac{2}{3}\right)^5:\left(-\dfrac{2}{3}\right)^2=\left(-\dfrac{2}{3}\right)^3=-\dfrac{8}{27}\)
b: =>x-1/2=1/3
=>x=5/6
c: =>2/3x-1=0 hoặc 3/4x+1/2=0
=>x=3/2 hoặc x=-1/2:3/4=-1/2*4/3=-4/6=-2/3
d =>4/9:x=10/3:9/4=10/3*4/9=40/27
=>x=4/9:40/27=4/9*27/40=108/360=3/10
a/ \(\Leftrightarrow9x^2=36\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=6\\3x=-6\end{matrix}\right.\)
\(\Leftrightarrow x=\pm2\)
b/ \(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\end{matrix}\right.\) (do \(x^2+\dfrac{1}{2}>0\))
\(\Leftrightarrow x=\pm1\)
c/ Có \(\left|x+4\right|\ge0\forall x\)
=> \(\left|x+4\right|+5\ge5>0\forall x\)
\(\Rightarrow\left|x+4\right|+5=0\left(vô-lí\right)\)
\(\Rightarrow x\in\varnothing\)
d/ \(\sqrt{2x}-3-1=0\)
\(\Leftrightarrow\sqrt{2x}=4\)
\(\Leftrightarrow2x=16\)
\(\Leftrightarrow x=8\)
\(E=\dfrac{4\left|x\right|+9}{\left|x\right|+1}\)
\(\left\{{}\begin{matrix} \left|x\right|\ge0\Rightarrow4\left|x\right|\ge0\Rightarrow4\left|x\right|+9\ge9\\\left|x\right|\ge0\Rightarrow x+1\ge1\end{matrix}\right.\)
\(MAX_E\Rightarrow MIN_{\left|x\right|+1}\)
\(MIN_{\left|x\right|+1}=1\)
\(\Rightarrow\left|x\right|=0\Rightarrow x=0\)
\(\Rightarrow MAX_E=\dfrac{4.\left|0\right|+9}{\left|0\right|+1}=\dfrac{9}{1}=9\)
\(F=\dfrac{2\left|x\right|+8}{3\left|x\right|+1}\)
\(\left\{{}\begin{matrix}\left|x\right|\ge0\Rightarrow2\left|x\right|\ge0\Rightarrow2\left|x\right|+8\ge8\\\left|x\right|\ge0\Rightarrow3\left|x\right|\ge0\Rightarrow3\left|x\right|+1\ge1\end{matrix}\right.\)
\(MAX_F\Rightarrow MIN_{3\left|x\right|+1}\)
\(MIN_{3\left|x\right|+1}=1\)
\(\Rightarrow\left|x\right|=0\Rightarrow x=0\)
\(\Rightarrow MAX_F=\dfrac{2.\left|0\right|+8}{3.\left|0\right|+1}=\dfrac{8}{1}=8\)
\(\)
để \(\dfrac{x^2\left(x-3\right)}{x-9}< 0\) thì \(x^2\left(x-3\right)\:v\text{à}\:x-9\:ph\text{ải}\:kh\text{ác}\:nhau\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2\left(x-3\right)>0\\x-9< 0\end{matrix}\right.\\\left\{{}\begin{matrix}x^2\left(x-3\right)< 0\\x-9>0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^3>3x^2\\x< 9\end{matrix}\right.\\\left\{{}\begin{matrix}x^3< 3x^2\\x>9\end{matrix}\right.\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>3\\x< 9\end{matrix}\right.\\\left\{{}\begin{matrix}x< 3\\x>9\end{matrix}\right.\end{matrix}\right.\Rightarrow3< x< 9\)
Thanks nha