Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: =>x=0 hoặc x=-3
b: =>x-2=0 hoặc 5-x=0
=>x=2 hoặc x=5
c: =>x-1=0
hay x=1
\(a,\left\{{}\begin{matrix}\left|x-3y\right|\ge0\\\left|y+4\right|\ge0\end{matrix}\right.\Rightarrow VT\ge0\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-3y=0\\y+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3y=-12\\y=-4\end{matrix}\right.\)
\(b,Sửa:\left|x-y-5\right|+\left(y+3\right)^2=0\\ \left\{{}\begin{matrix}\left|x-y-5\right|\ge0\\\left(y+3\right)^2\ge0\end{matrix}\right.\Rightarrow VT\ge0\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-y-5=0\\y+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y+5=2\\y=-3\end{matrix}\right.\)
\(c,\left\{{}\begin{matrix}\left|x+y-1\right|\ge0\\\left(y-2\right)^4\ge0\end{matrix}\right.\Rightarrow VT\ge0\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x+y-1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1-y=-1\\y=2\end{matrix}\right.\)
\(d,\left\{{}\begin{matrix}\left|x+3y-1\right|\ge0\\3\left|y+2\right|\ge0\end{matrix}\right.\Rightarrow VT\ge0\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x+3y-1=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1-3y=7\\y=-2\end{matrix}\right.\)
\(e,Sửa:\left|2021-x\right|+\left|2y-2022\right|=0\\ \left\{{}\begin{matrix}\left|2021-x\right|\ge0\\\left|2y-2022\right|\ge0\end{matrix}\right.\Rightarrow VT\ge0\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}2021-x=0\\2y-2022=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2021\\y=1011\end{matrix}\right.\)
a: 2x-1=0
nên 2x=1
hay x=1/2
b: 4x2-16=0
=>(x-2)(x+2)=0
=>x=2 hoặc x=-2
c: x2-2x=0
=>x(x-2)=0
=>x=0 hoặc x=2
a: \(\left(2x-3\right)^2=\left|3-2x\right|\)
=>\(\left\{{}\begin{matrix}\left|2x-3\right|>=0\\\left(2x-3\right)^2=\left(2x-3\right)\end{matrix}\right.\Leftrightarrow\left(2x-3\right)^2-\left(2x-3\right)=0\)
=>\(\left(2x-3\right)\left(2x-3-1\right)=0\)
=>\(\left(2x-3\right)\left(2x-4\right)=0\)
=>\(\left[{}\begin{matrix}2x-3=0\\2x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=2\end{matrix}\right.\)
b: \(\left(x-1\right)^2+\left(2x-1\right)^2=0\)
=>\(x^2-2x+1+4x^2-4x+1=0\)
=>\(5x^2-6x+2=0\)
\(\Delta=\left(-6\right)^2-4\cdot5\cdot2=36-20\cdot2=-4< 0\)
=>Phương trình vô nghiệm
c: ĐKXĐ: x>=0
\(x-2\sqrt{x}=0\)
=>\(\sqrt{x}\cdot\sqrt{x}-2\cdot\sqrt{x}=0\)
=>\(\sqrt{x}\left(\sqrt{x}-2\right)=0\)
=>\(\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=4\left(nhận\right)\end{matrix}\right.\)
d: \(\left(x-1\right)^2+\dfrac{1}{7}=0\)
mà \(\left(x-1\right)^2+\dfrac{1}{7}>=\dfrac{1}{7}>0\forall x\)
nên \(x\in\varnothing\)
a: =>2x>-6
hay x>-3
e: =>(5-x)/x<0
=>0<x<5
h: \(\Leftrightarrow\dfrac{x+5-x-3}{x+3}< 0\)
\(\Leftrightarrow x+3< 0\)
hay x<-3
g: \(\Leftrightarrow\dfrac{2x+7}{x+4}>0\)
\(\Leftrightarrow\left[{}\begin{matrix}x>-\dfrac{7}{2}\\x< -4\end{matrix}\right.\)
2:
a: 5/x-y/3=1/6
=>\(\dfrac{15-xy}{3x}=\dfrac{1}{6}\)
=>\(\dfrac{30-2xy}{6x}=\dfrac{x}{6x}\)
=>30-2xy=x
=>x(2y+1)=30
=>(x;2y+1) thuộc {(30;1); (-30;-1); (10;3); (-10;-3); (6;5); (-6;-5)}
=>(x,y) thuộc {(30;0); (-30;-1); (10;1); (-10;-2); (6;2); (-6;-3)}
b: x/6-2/y=1/30
=>\(\dfrac{xy-12}{6y}=\dfrac{1}{30}\)
=>\(\dfrac{5xy-60}{30y}=\dfrac{y}{30y}\)
=>5xy-60=y
=>y(5x-1)=60
=>(5x-1;y) thuộc {(-1;-60); (4;15); (-6;-10)}(Vì x,y là số nguyên)
=>(x,y) thuộc {(0;-60); (1;15); (-1;-10)}
\(b.\) \(\left(x-1\right).\left(x-2\right)>0\)
\(\Leftrightarrow x-1\) và \(x-2\) cùng dấu
\(\Leftrightarrow\hept{\begin{cases}x-1>0\\x-2>0\end{cases}}\) Hoặc: \(\Leftrightarrow\hept{\begin{cases}x-1< 0\\x-2< 0\end{cases}}\)
T/hợp 1: \(\hept{\begin{cases}x-1>0\\x-2>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>1\\x>2\end{cases}}\)
T/hợp 2: \(\hept{\begin{cases}x-1< 0\\x-2< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x< 1\\x< 2\end{cases}}\)
Vậy: ..................................
\(e.\)\(\frac{5}{x}< 1\)
\(\Leftrightarrow x>5\)
Vậy: .............................