Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\frac{15}{x}+4\) là số nguyên
\(\Rightarrow15⋮x\)(hoặc \(x\inƯ\left(15\right)\)
Vậy Ư(15)là:[1,-1,3,-3,5,-5,15,-15]
Do đó \(x\in\)[1,-1,3,-3,5,-5,15,-15]
để phân số trên là số nguyên thì (x+4) thuộc Ư(15)={1,3,5,-1,-3,-5,15,-15}
xét từng TH:
x+4=1=>x=-3
x+4=3=>x=-1
x+4=5=>x=1
x+4=15=>x=11
x+4=-1=>x=-5
x+4=-3=>x=-7
x+4=-5=>x=-9
x+4=-15=>x=-19
vậy x thuộc { -19,-9,-7,-5,-1,1,11,-3}
\(2b+23⋮b+3\Leftrightarrow2\left(b+3\right)+17⋮b+3\)
\(\Leftrightarrow17⋮b+3\Rightarrow b+3\inƯ\left(17\right)=\left\{\pm1;\pm17\right\}\)
b + 3 | 1 | -1 | 17 | -17 |
b | -2 | -4 | 14 | -20 |
\(8x-35⋮x-2\)
\(8\left(x-2\right)-19⋮x-2\)
\(-19⋮x-2\)hay \(x-2\inƯ\left(-19\right)=\left\{\pm1;\pm19\right\}\)
x - 2 | 1 | -1 | 19 | -19 |
x | 3 | 1 | 21 | -17 |
Có \(8x-35⋮x-2\)
=> \(8x-16-19⋮x-2\)
=>\(-19⋮x-2\)do \(8x-16⋮x-2\)
=>\(x-2\inƯ\left(-19\right)\)
=>\(x-2=\left\{\pm1;\pm19\right\}\)
Lập bảng giá trị tìm x
x - 2 | -1 | 1 | -19 | 19 |
x | 1 | 3 | -17 | 21 |
Vậy \(x\in\left\{1;3;-17;21\right\}\)
Trả lời:
Ta có : \(b-4\in\left(-16\right)\)
Mà \(Ư\left(-16\right)=\left\{\pm1;\pm2;\pm4;\pm8;\pm16\right\}\)
nên ta có bảng sau:
b-4 | 1 | -1 | 2 | -2 | 4 | -4 | 8 | -8 | 16 | -16 |
b | 5 | 3 | 6 | 2 | 8 | 0 | 12 | -4 | 20 | -12 |
Vậy \(b\in\left\{5;3;6;2;8;0;12;-4;20;-12\right\}\)thì \(b-4\inƯ\left(-16\right)\)
\(3c-20⋮c-5\Leftrightarrow3\left(c-5\right)-5⋮c-5\)
\(\Leftrightarrow-5⋮c-5\Rightarrow c-5\inƯ\left(-5\right)=\left\{\pm1;\pm5\right\}\)
c - 5 | 1 | -1 | 5 | -5 |
c | 6 | 4 | 10 | 0 |
=> 5b-31: b-4
=>5b-31: 5 . (b-4)
=> 5b-31: 5b -20
=>11:b <=>b e{-1;1;-11;11}
\(n+1\)là ước số của \(7n-6\)suy ra \(\frac{7n-6}{n+1}\inℤ\).
Ta có: \(\frac{7n-6}{n+1}=\frac{7\left(n+1\right)-13}{n+1}=7-\frac{13}{n+1}\inℤ\Leftrightarrow\frac{13}{n+1}\inℤ\Leftrightarrow n+1\inƯ\left(13\right)=\left\{\pm1,\pm13\right\}\).
\(\Leftrightarrow n\in\left\{-14,-2,0,12\right\}\).
\(5b-39⋮b-6\)
\(\Leftrightarrow5\left(b-6\right)-9⋮b-6\)
\(\Leftrightarrow-9⋮b-6\Rightarrow b-6\inƯ\left(-9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
b - 6 | 1 | -1 | 3 | -3 | 9 | -9 |
b | 7 | 5 | 9 | 3 | 15 | -3 |
Ta có: c + 5 là ước của 6c + 48
=> 6c + 48 chia hết cho c + 5
=> 6c + 30 + 18 chia hết cho c + 5
=> 6 (c + 5) + 18 chia hết cho c + 5
=> 18 chia hết cho c + 5
=> c + 5 thuộc Ư(18) = {-18 ; -9 ; -6 ; -3 ; -2 ; -1 ; 1 ; 2 ; 3 ; 6 ; 9 ; 18}
Ta có bảng sau:
c + 5 | -18 | -9 | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 | 9 | 18 |
c | -23 (thỏa mãn) | -14 (thỏa mãn) | -11 (thỏa mãn) | -8 (thỏa mãn) | -7 (thỏa mãn) | -6 (thỏa mãn) | -4 (thỏa mãn) | -3 (thỏa mãn) | -2 (thỏa mãn) | 1 (thỏa mãn) | 4 (thỏa mãn) | 13 (thỏa mãn) |
\(6c+48⋮c+5\)
\(\Leftrightarrow6\left(c+5\right)+18⋮c+5\)
\(\Leftrightarrow18⋮c+5\Rightarrow c+5\inƯ\left(18\right)=\left\{\pm1;\pm2;\pm3;\pm6;\pm9;\pm18\right\}\)
tự lập bảng nhé
\(7x+81⋮x+9\Leftrightarrow7\left(x+9\right)+18⋮x+9\)
\(\Leftrightarrow18⋮x+9\Rightarrow x+9\inƯ\left(18\right)=\left\{\pm1;\pm2;\pm3;\pm6;\pm9;\pm18\right\}\)
tụ lập bảng nhé
Trả lời:
Vì \(x+9\inƯ\left(7x+81\right)\)hay \(7x+81⋮\left(n+9\right)\)\(\Leftrightarrow7\left(x+9\right)+18⋮\left(x+9\right)\)
\(\Rightarrow18⋮\left(x+9\right)\)hay \(x+9\inƯ\left(18\right)=\left\{\pm1;\pm2;\pm3;\pm6;\pm9;\pm18\right\}\)
Ta có bảng sau:
Vậy \(x\in\left\{-8;-10;-7;-11;-6;-12;-3;-15;0;-18;9;-27\right\}\)thì \(x+9\inƯ\left(7x+81\right)\)