Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{5.8}\)\(+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x\left(x+3\right)}=\frac{98}{1545}\)
\(\Leftrightarrow\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{x\left(x+3\right)}=3.\frac{98}{1545}\)
\(\Leftrightarrow\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{x\left(x+3\right)}=\frac{98}{515}\)
\(\Leftrightarrow\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{98}{515}\)
\(\Leftrightarrow\frac{1}{5}-\frac{1}{x+3}=\frac{98}{515}\)
\(\Leftrightarrow\frac{1}{x+3}=\frac{1}{5}-\frac{98}{515}\)
\(\Leftrightarrow\frac{1}{x+3}=\frac{1}{103}\)
\(\Leftrightarrow x+3=103\)
\(\Leftrightarrow x\)\(=103-3\)
\(\Leftrightarrow x\)\(=100\)
Vậy x = 100
~~~~~~~Hok tốt~~~~~~~~
ta có \(\frac{1}{5.8}+\frac{1}{8.11}+...\frac{1}{x.\left(x+3\right)}\)\(=\frac{1}{3}\left(\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{x.\left(x+3\right)}\right)\)\(=\frac{1}{3}.\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3}\right)\)
\(\Rightarrow\frac{1}{3}.\left(\frac{1}{5}-\frac{1}{x+3}\right)=\frac{98}{1545}\)
\(\Rightarrow\frac{1}{5}-\frac{1}{x+3}=\frac{98}{1545}:\frac{1}{3}=\frac{98}{515}\)
\(\Rightarrow\frac{1}{x+3}=\frac{1}{5}-\frac{98}{515}=\frac{1}{103}\)
\(\Rightarrow x+3=103\)
\(\Rightarrow x=100\)
nhớ k nha
A=1999/2000
B=199/200
C=511/512
hok tốt
Đáp án
mình lười trình bày cách làm lém, để đáp án thui nha
A = \(\frac{1999}{2000}\)
B = \(\frac{199}{200}\)
C = \(\frac{511}{512}\)
\(B=\frac{2}{8}+\frac{2}{24}+\frac{2}{48}+...+\frac{2}{18\cdot20}\)
\(B=\frac{2}{2\cdot4}+\frac{2}{4\cdot6}+\frac{2}{6\cdot8}+...+\frac{2}{18\cdot20}\)
\(B=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{18}-\frac{1}{20}\)
\(B=\frac{1}{2}-\frac{1}{20}\)
\(B=\frac{9}{20}\)
=))
\(A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\)
\(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\)
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(A=\frac{1}{2}+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{4}-\frac{1}{4}\right)+...+\left(\frac{1}{9}-\frac{1}{9}\right)-\frac{1}{10}\)
\(A=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)
\(=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times\frac{4}{5}\times\frac{5}{6}\times\frac{6}{7}=\frac{1}{7}\)
a) (1,5 . 1,9 - x - 0,5) : 0,25 = 7,5 : 0,125
=> (2,85 - x - 0,5) : 0,25 = 60
=> (2,85 - 0,5) - x = 60 . 0,25
=> 2,35 - x = 15
=> x = 2,35 - 15
=> x = -12,65
Vậy x = -12,65
b) \(1-\left(5\frac{2}{9}+x-7\frac{7}{18}\right)\div2\frac{1}{6}=0\)
\(\Rightarrow\left(5\frac{2}{9}-7\frac{7}{18}+x\right)\div2\frac{1}{6}=1-0\)
\(\Rightarrow\left(\frac{47}{9}-\frac{133}{18}+x\right)\div2\frac{1}{6}=1\)
\(\Rightarrow\frac{-13}{6}+x=2\frac{1}{6}\)
\(\Rightarrow x=2\frac{1}{6}-\frac{-13}{6}\)
\(\Rightarrow x=\frac{13}{6}+\frac{13}{6}\)
\(\Rightarrow x=\frac{26}{6}\)
\(\Rightarrow x=\frac{13}{3}\)
Vậy \(x=\frac{13}{3}\)
c) \(35\left(2\frac{1}{5}-x\right)=32\)
\(\Rightarrow2\frac{1}{5}-x=32\div35\)
\(\Rightarrow\frac{11}{5}-x=\frac{32}{35}\)
\(\Rightarrow x=\frac{11}{5}-\frac{32}{35}\)
\(\Rightarrow x=\frac{9}{7}\)
Vậy \(x=\frac{9}{7}\)
d) \(\frac{4}{3}+\left(x\div2\frac{2}{3}-0,5\right).1\frac{35}{55}=0,6\)
\(\Rightarrow\left(x\div\frac{8}{3}-\frac{1}{2}\right).\frac{18}{11}=\frac{3}{5}-\frac{4}{3}\)
\(\Rightarrow\left(x\div\frac{8}{3}-\frac{1}{2}\right).\frac{18}{11}=\frac{-11}{15}\)
\(\Rightarrow x\div\frac{8}{3}-\frac{1}{2}=\frac{-11}{15}\div\frac{18}{11}\)
\(\Rightarrow x\div\frac{8}{3}-\frac{1}{2}=\frac{-121}{270}\)
\(\Rightarrow x\div\frac{8}{3}=\frac{-121}{270}+\frac{1}{2}\)
\(\Rightarrow x\div\frac{8}{3}=\frac{7}{135}\)
\(\Rightarrow x=\frac{7}{135}.\frac{8}{3}\)
\(\Rightarrow x=\frac{56}{405}\)
Vậy \(x=\frac{56}{405}\)
e) \(1\frac{1}{3}.2\frac{2}{4}\div\frac{5}{6}.1\frac{1}{11}=11-5\div x\)
\(\Rightarrow\frac{4}{3}.\frac{5}{2}\div\frac{5}{6}.\frac{12}{11}=11-5\div x\)
\(\Rightarrow\frac{10}{3}\div\frac{5}{6}.\frac{12}{11}=11-5\div x\)
\(\Rightarrow4.\frac{12}{11}=11-5\div x\)
\(\Rightarrow11-5\div x=\frac{48}{11}\)
\(\Rightarrow5\div x=11-\frac{48}{11}\)
\(\Rightarrow5\div x=\frac{73}{11}\)
\(\Rightarrow x=5\div\frac{73}{11}\)
\(\Rightarrow x=\frac{55}{73}\)
Vậy \(x=\frac{55}{73}\)
a) (1,5 * 1,9 - x - 0,5) : 0,25 = 7,5 : 0,125
(2,85 - x - 0,5) : 0,25 = 60
(2,85 - x - 0,5) = 60 x 0,25
(2,85 - x - 0,5) = 15
2,35 - x = 15
x = 2,35 - 15
x = -12,65
bài 1
a,
32 + 68 :17 x 5 - 29
= 32 + 20 -29
= 52 - 29
= 23
b,
15 x 48 - 30 x 24 - 125
= 720 - 720 -125
= 0-125
a,
32 + 68 :17 x 5 - 29
= 32 + 20 -29
= 52 - 29
= 23
b,
15 x 48 - 30 x 24 - 125
= 720 - 720 -125
= 0-125
b
Q=\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{9900}\)
Rồi giải tương tự như câu a là được
M=\(5\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)=5\left(1-\frac{1}{100}\right)=5.\frac{99}{100}=\frac{99}{20}\)
1/3 + 1/6 + x/2018 = 1
<=> 1/2 + x/2018 = 1
<=> x/2018 = 1 - 1/2
<=> x/2018 = 1/2
<=> x = 2018 x 1/2
<=> x = 1009
Không hiểu thì ib tớ giải thích
\(\frac{1}{3}+\frac{1}{6}+\frac{x}{2018}=1\)
\(\Leftrightarrow\frac{1}{6}+\frac{x}{2018}=1-\frac{1}{3}\)
\(\Leftrightarrow\frac{1}{6}+\frac{x}{2018}=\frac{3}{3}-\frac{1}{3}\)
\(\Leftrightarrow\frac{1}{6}+\frac{x}{2018}=\frac{2}{3}\)
\(\Leftrightarrow\frac{x}{2018}=\frac{2}{3}-\frac{1}{6}\)
\(\Leftrightarrow\frac{x}{2018}=\frac{4}{6}-\frac{1}{6}\)
\(\Leftrightarrow\frac{x}{2018}=\frac{3}{6}\)
\(\Leftrightarrow\frac{x}{2018}=\frac{1}{2}\)
\(\Leftrightarrow\frac{x}{2018}=\frac{1009}{2018}\)
\(\Leftrightarrow x=1009\)