Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=> \(\left(\frac{1}{2}\right)^x.2+4=17\)
=> \(\left(\frac{1}{2}\right)^x.2=17-4=13\)
=> \(\left(\frac{1}{2}\right)^x=\frac{1}{2^x}=13:2=\frac{13}{2}=\frac{1}{\frac{2}{13}}\)
Vì \(2^x\ne\frac{2}{13}\) nên không tìm được x thõa mãn
TH2: (Theo đề của bạn thì có 2 TH)
\(\left(\frac{1}{2}\right)^x+\left(\frac{1}{2}\right)^{x+4}=17\)
=> \(\left(\frac{1}{2}\right)^x+\left(\frac{1}{2}\right)^{x+4}= \left(\frac{1}{2}\right)^x+\left(\frac{1}{2}\right)^x.\left(\frac{1}{2}\right)^4=\left(\frac{1}{2}\right)^x.\left(1+\frac{1}{16}\right)=\left(\frac{1}{2}\right)^x.\frac{17}{16}\)
=> \(\left(\frac{1}{2}\right)^x=17:\frac{17}{16}=16\)
Vì \(\left(\frac{1}{2}\right)^x=\frac{1}{2^x}\) và \(16=2^{-\left(-4\right)}=\frac{1}{2^{-4}}\)
=> x=-4
A = 7/7.17 + 7/17.27 + 7/27.37 + ............ +7/1997.2007
A=7/10 ( 10/7.17 + 10/17.27 + 10/27.37 + ................+10/1997.2007)
A= 7/10 ( 1/7 -1/17 + 1/17 - 1/27 + 1/27 - 1/37 +...............+ 1/1997 - 1/2007)
A= 7/10 (1/7 - 1/2007)
A= 7/10 . 2000/14049
A=200/2007
bây h mk có vc rùi tích đúng nha tối mk lm típ cho
\(\left(\frac{1}{2}\right)^x+\left(\frac{1}{2}\right)^{x+4}=17\)
\(\left(\frac{1}{2}\right)^x+\left(\frac{1}{2}\right)^x.\left(\frac{1}{2}\right)^4=17\)
\(\left(\frac{1}{2}\right)^x.\left[1+\left(\frac{1}{2}\right)^4\right]=17\)
\(\left(\frac{1}{2}\right)^x.\frac{17}{16}=17\)
\(\left(\frac{1}{2}\right)^x=\frac{17.16}{17}=16\)
\(\left(\frac{1}{2}\right)^x=16=\left(\frac{1}{2}\right)^{-4}\)
=> x = -4
\(\left(\frac{1}{2}\right)^x+\left(\frac{1}{2}\right)^{x+4}=17\)
\(\Leftrightarrow\left(\frac{1}{2}\right)^x\left[1+\left(\frac{1}{2}\right)^4\right]=17\)
\(\Leftrightarrow\left(\frac{1}{2}\right)^x\left(1+\frac{1}{16}\right)=17\)
\(\Leftrightarrow\left(\frac{1}{2}\right)^x.\frac{17}{16}=17\)
\(\Leftrightarrow\left(\frac{1}{2}\right)^x=16\)
\(\Leftrightarrow\frac{1}{2^x}=\frac{1}{2^{-4}}\)
\(\Rightarrow x=-4\)
Bài 1:
$M=\frac{27}{x-15}-1$
Để $M$ min thì $\frac{27}{x-15}$ min.
Để $\frac{27}{x-15}$ min thì $x-15$ là số âm lớn nhất
$\Rightarrow x$ là số nguyên lớn nhất nhỏ hơn 15
$\Rightarrow x=14$
Khi đó: $M_{\min}=\frac{42-14}{14-15}=-28$
Bài 2:
\(\left(\dfrac{1}{2}\right)^x+\left(\dfrac{1}{2}\right)^{x-4}=17\)
\(\Leftrightarrow\left(\dfrac{1}{2}\right)^{x-4}\left[\left(\dfrac{1}{2}\right)^4+1\right]=17\)
\(\Leftrightarrow\left(\dfrac{1}{2}\right)^{x-4}.\dfrac{17}{16}=17\)
\(\Leftrightarrow\left(\dfrac{1}{2}\right)^{x-4}=16=\left(\dfrac{1}{2}\right)^{-4}\)
$\Rightarrow x-4=-4\Leftrightarrow x=0$
\(\frac{x+1}{18}+\frac{x+2}{17}=\frac{x+5}{14}+\frac{x+4}{15}\)
\(\Rightarrow\frac{x+1}{18}+1+\frac{x+2}{17}+1=\frac{x+5}{14}+1+\frac{x+4}{15}+1\)
\(\Rightarrow\frac{x+1}{18}+\frac{18}{18}+\frac{x+2}{17}+\frac{17}{17}=\frac{x+5}{14}+\frac{14}{14}+\frac{x+4}{15}+\frac{15}{15}\)
\(\Rightarrow\frac{x+19}{18}+\frac{x+19}{17}=\frac{x+19}{14}+\frac{x+19}{15}\)
\(\Rightarrow\frac{x+19}{18}+\frac{x+19}{17}-\frac{x+19}{14}-\frac{x+19}{15}=0\)
\(\Rightarrow\left(x+19\right).\left(\frac{1}{18}+\frac{1}{17}-\frac{1}{14}-\frac{1}{15}\right)=0\)
\(\text{Mà }\left(\frac{1}{18}+\frac{1}{17}-\frac{1}{14}-\frac{1}{15}\right)\ne0\text{ nên: }x+19=0\Rightarrow x=-19\)
\(\left(\frac{1}{2}\right)^x+\left(\frac{1}{2}\right)^{x+4}=17\)
\(\left(\frac{1}{2}\right)^x+\left(\frac{1}{2}\right)^x.\left(\frac{1}{2}\right)^4=17\)
\(\left(\frac{1}{2}\right)^x.\left[1+\left(\frac{1}{2}\right)^4\right]=17\)
\(\left(\frac{1}{2}\right)^x.\frac{17}{16}=17\)
\(\left(\frac{1}{2}\right)^x=17:\frac{17}{16}\)
\(\left(\frac{1}{2}\right)^x=16\)
\(\left(\frac{1}{2}\right)^x=\left(\frac{1}{2}\right)^{-4}\)
\(\Rightarrow\)x = -4
Vậy x = -4