Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì x dương nên \(x^3+3x^2+5>x+3\)
hay \(5^y>5^z\Rightarrow5^y⋮5^z\)
\(\Rightarrow x^3+3x^2+5⋮x+3\)
\(\Rightarrow x^2\left(x+3\right)+5⋮x+3\)
Vì \(x^2\left(x+3\right)⋮x+3\)nên \(5⋮x+3\)
\(\Rightarrow x+3\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Mà x + 3 > 3 ( do x dương ) nên x + 3 = 5 \(\Rightarrow x=2\)
\(\Rightarrow5^z=2+3=5\Leftrightarrow z=1\)
và \(5^y=8+12+5=25\Rightarrow y=2\)
Vậy x = 2; y = 2; z = 1
x^2-25x^4=0
=>x^2-25x^2.x^2=0
=>x^2.(1-25x^2)=0
=>x=0 hoặc x^2=1/25
=>x thuộc {-0,2;0;0,2}
2) 2 giá trị
3)x^2+7x+12=0
=>x^2+3x+4x+3.4=0
=>x(x+3)+4(x+3)=0
=>(x+4)(x+3)=0
=>x=-3;x=-4
nhớ ****
1)x thuộc {-0,2;0;0,2}
2)2 giá trị
3)x^2+3x+4x+4.3=0
=>x(x+3)+4(x+3)=0
=>(x+3)(x+4)=0
=>x=-4;x=-3
1)x2-25x4=0
x2(1-25x2)=0
=>x^2=0 hoặc 1-25x^2=0
x=0 25x^2=-1-0=1
x^2=1/25=(1/5)^2=(1/-5)^2
Vậy S={-1/5;0;1/5}
2)Có 3 giá trị là 0;1;2
3)có 2 giá trị là -3;-4
[[3x-3]+2x(-1)2016]=3x-2017 mũ 0
<=>3x-3+2x+1=3x-1
<=>-3+2x+1=1
<=>-2+2x=1
<=>2x=2-1
<=>2x=1
<=>x=1/2
2,p=3 bạn nhé
1. SAi đề!
2.
\(\text{Ta xét 3 trường hợp:}\)
\(Th1:p=2\text{ ta có:}\)
\(2^2+2^2=8\left(\text{Hợp số}\Rightarrow\text{loại}\right)\)
\(Th2:p=3\text{ ta có:}\)
\(2^3+3^2=17\left(\text{số nguyên tố}\Rightarrow\text{chọn}\right)\)
\(Th3:p>3\text{ ta có:}\)
\(\Rightarrow p\text{ ko chia hết cho 3 và p luôn lẻ}\left(\text{vì 2 là số chẵn duy nhất là số nguyên tố}\right)\)
\(\Rightarrow\orbr{\begin{cases}p=3k+1\\p=3k+2\end{cases}\text{, do đó }p^2-1=\left(p-1\right)\left(p+1\right)⋮3\left(1\right)}\)
\(\text{Vì p luôn lẻ nên }2^p+1\text{ luôn chia hết cho 3}\left(2\right)\)
\(\text{Từ (1) và (2) ta có:}\)
\(2^p+1+p^2-1=2^p+p^2⋮3\left(\text{ loại }\right)\)
\(\text{Vậy p=3 thỏa mãn đề bài}\)
1: Tìm x, y nguyên tố thoả mãn
y2 – 2x2 = 1
Hướng dẫn:
Ta có y2 – 2x2 = 1 ⇒ y2 = 2x2 +1 ⇒ y là số lẻ
Đặt y = 2k + 1 (với k nguyên).Ta có (2k + 1)2 = 2x2 + 1
⇔ x2 = 2 k2 + 2k ⇒ x chẵn , mà x nguyên tố ⇒ x = 2, y = 3
2: Tìm nghiệm nguyên dương của phương trình
(2x + 5y + 1)(2|x| + y + x2 + x) = 105
Hướng dẫn:
Ta có: (2x + 5y + 1)(2|x| + y + x2 + x) = 105
Ta thấy 105 lẻ ⇒ 2x + 5y + 1 lẻ ⇒ 5y chẵn ⇒ y chẵn
2|x| + y + x2 + x = 2|x| + y + x(x+ 1) lẻ
có x(x+ 1) chẵn, y chẵn ⇒ 2|x| lẻ ⇒ 2|x| = 1 ⇒ x = 0
Thay x = 0 vào phương trình ta được
(5y + 1) ( y + 1) = 105 ⇔ 5y2 + 6y – 104 = 0
⇒ y = 4 hoặc y = ( loại)
Thử lại ta có x = 0; y = 4 là nghiệm của phương trình
a) 3x - 1/2
Đa thức có nghiệm <=> 3x - 1/2 = 0
<=> 3x = 1/2
<=> x = 1/6
Vậy nghiệm của đa thức là 1/6
b) 2x2 - x
Đa thức có nghiệm <=> 2x2 - x = 0
<=> x( 2x - 1 ) = 0
<=> x = 0 hoặc 2x - 1 = 0
<=> x = 0 hoặc x = 1/2
Vậy nghiệm của đa thức là 0 và 1/2
c) 4x2 - 9
Đa thức có nghiệm <=> 4x2 - 9 = 0
<=> 4x2 = 9
<=> x2 = 9/4
<=> x = \(\pm\sqrt{\frac{9}{4}}=\pm\frac{3}{2}\)
Vậy nghiệm của đa thức là \(\pm\frac{3}{2}\)
d) x2 - 4x + 3
Đa thức có nghiệm <=> x2 - 4x + 3 = 0
<=> ( x - 1 )( x - 3 ) = 0
<=> x - 1 = 0 hoặc x - 3 = 0
<=> x = 1 hoặc x = 3
Vậy nghiệm của đa thức là 1 và 3
câu a) 3x-1/2=0
suy ra: 3x=0+1/2
suy ra:3x=1/2
suy ra:x=1/2:3
suy ra:x=1/6
câu b) 2x mũ 2-x=0
suy ra 2x mũ 2=o+x
mai mik lm tiếp cho
bi h mik buồn ngủ quá
Với \(x\in Z\)
\(3x^3-2x^2+4x+1=0\Leftrightarrow x\left(3x^2-2x+4\right)=-1\)
Ta có: \(-1=-1\cdot1=1\cdot\left(-1\right)\)
TH1: \(\hept{\begin{cases}x=-1\\3x^2-2x+4=3+2+4=9\left(\ne1\right)\end{cases}}\) (loại)
TH2: \(\hept{\begin{cases}x=1\\3x^2-2x+4=3-2+4=5\left(\ne-1\right)\end{cases}}\) (loại)
Vậy không có giá trị x nguyên nào thoả mãn \(3x^3-2x^2+4x+1=0\).