\(\sqrt[3]{7+5\sqrt{2x}}+\sqrt[3]{7-5\sqrt{2x}}-1\)


 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2018

Cho \(5\sqrt{x}7\) mk viet nham

Sua lai thanh \(5\sqrt{x}-7\)

19 tháng 10 2022

a: \(A=\left(\dfrac{2}{\sqrt{x}-2}+\dfrac{3}{2\sqrt{x}+1}-\dfrac{5\sqrt{x}-7}{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\right)\cdot\dfrac{5\sqrt{x}\left(\sqrt{x}-2\right)}{2\sqrt{x}+3}\)

\(=\dfrac{4\sqrt{x}+2+3\sqrt{x}-6-5\sqrt{x}+7}{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{5\sqrt{x}\left(\sqrt{x}-2\right)}{2\sqrt{x}+3}\)

\(=\dfrac{2\sqrt{x}+3}{\left(2\sqrt{x}+1\right)}\cdot\dfrac{5\sqrt{x}}{2\sqrt{x}+3}=\dfrac{5\sqrt{x}}{2\sqrt{x}+1}\)

b: Để A là số nguyên thì \(5\sqrt{x}⋮2\sqrt{x}+1\)

=>10 căn x+5-5 chia hết cho 2 căn x+1

=>\(2\sqrt{x}+1\in\left\{1;5\right\}\)

hay \(x\in\varnothing\)

18 tháng 8 2020

lên hỏi đáp 247 hỏi cho nhanh !

20 tháng 8 2018

a , Ta có :

\(\Leftrightarrow\sqrt{7-x}=x-1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1\ge0\\7-x=x^2-2x+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\x^2-x-6=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\\left[{}\begin{matrix}x=3\left(tm\right)\\x=-2\left(loại\right)\end{matrix}\right.\end{matrix}\right.\)

Vậy pt có nghiệm là x = 3

b , c , d , e , f tương tự

20 tháng 9 2016

câu d tách hđt r đánh giá . VP=(x-6)^2+2>=2 còn VP <=2 =>....
câu c tương tự 
câu b c bình phương oặc đặt ẩn :3

16 tháng 8 2018

\(F=\left(\dfrac{1}{3-\sqrt{5}}+\dfrac{1}{3+\sqrt{5}}\right):\dfrac{5-\sqrt{5}}{\sqrt{5}-1}=\dfrac{6}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}:\dfrac{\sqrt{5}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}=\dfrac{3}{2}.\dfrac{1}{\sqrt{5}}=\dfrac{3}{2\sqrt{5}}\)

\(G=\sqrt{3+\sqrt{5}}+\sqrt{7-3\sqrt{5}}-\sqrt{2}=\dfrac{\sqrt{5+2\sqrt{5}+1}+\sqrt{9-2.3.\sqrt{5}+5}-2}{\sqrt{2}}=\dfrac{\sqrt{5}+1+3-\sqrt{5}-2}{\sqrt{2}}=\dfrac{2}{\sqrt{2}}=\sqrt{2}\)

\(H=\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}=\sqrt{x-2+2\sqrt{2}.\sqrt{x-2}+2}+\sqrt{x-2-2\sqrt{2}.\sqrt{x-2}+2}=\sqrt{\left(\sqrt{x-2}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{x-2}-\sqrt{2}\right)^2}=\sqrt{x-2}+\sqrt{2}+\left|\sqrt{x-2}-\sqrt{2}\right|\left(x\ge2\right)\)

16 tháng 8 2018

cảm ơn bn nha

7 tháng 9 2017

do \(x^2+x+1=x^2+2.\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)

\(\Rightarrow\sqrt{x^2+x+1}>0\forall x\)

voi dk \(x\ge-1\) ta co 

\(x^2+x+1=x^2+2x+1\Rightarrow x=0\)(tm)

b,\(\sqrt{4x^2-20x+25}+2x=5\)

\(\Leftrightarrow\sqrt{\left(2x-5\right)^2}+2x=5\)

    \(\Leftrightarrow\left|2x-5\right|+2x=5\)

th1 \(2x-5\ge0\Leftrightarrow x\ge\frac{5}{2}\) ta co\(2x-5+2x=5\Leftrightarrow4x=10\Rightarrow x=2.5\left(tm\right)\)

th2 \(2x-5< 0\Leftrightarrow x< \frac{5}{2}\) \(5-2x+2x=5\Leftrightarrow5=5\)

\(\Rightarrow\) dung voi moi \(x< \frac{5}{2}\)

kl \(x\le\frac{5}{2}\)

c, \(\left|x-1\right|=4\) \(\Rightarrow\orbr{\begin{cases}x-1=4\left(x\ge1\right)\\x-1=-4\left(x< 1\right)\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\left(tm\right)\\x=-3\left(tm\right)\end{cases}}}\)

d.\(\sqrt{3\left(x^2+2x+1\right)+4}+\sqrt{5\left(x^2+2x+1\right)+16}\)

 =\(\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+16}\ge\sqrt{4}+\sqrt{16}=6\)

ma \(-x^2-2x+5=-\left(x^2+2x+1\right)+6=-\left(x+1\right)^2+6\le6\)

dau = xay ra \(\Leftrightarrow x=-1\)