Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để A là số nguyên thì 9 \(⋮\)\(\sqrt{x}-5\)
\(\Rightarrow\sqrt{x}-5\inƯ\left(9\right)=\left\{1;-1;3;-3;9;-9\right\}\)
Lập bảng ta có :
\(\sqrt{x}-5\) | 1 | -1 | 3 | -3 | 9 | -9 |
x | 36 | 16 | 64 | 4 | 196 | không tồn tại |
Vậy x = ....
Biến đổi : \(B=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)
Do B là số nguyên nên \(\frac{4}{\sqrt{x}-3}\)phải là số nguyên ( 1 )
\(\Rightarrow4⋮\sqrt{x}-3\)\(\Rightarrow\sqrt{x}-3\inƯ\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
Lập bảng ta có :
\(\sqrt{x}-3\) | 1 | -1 | 2 | -2 | 4 | -4 |
x | 16 | 4 | 25 | 1 | 49 | không tồn tại |
Vậy x = ....
Mình sửa đề, căn x thôi nha chứ ko phải căn x+2 với căn x-3 đâu
\(ĐK:\hept{\begin{cases}x\ge0\\x\ne9\end{cases}}\)
Ta có : \(A=\frac{\sqrt{x}+2}{\sqrt{x}-3}=\frac{\sqrt{x}-3+5}{\sqrt{x}-3}=1+\frac{5}{\sqrt{x}-3}\)
Để A nguyên thì \(\frac{5}{\sqrt{x}-3}\)nguyên hay \(\sqrt{x}-3\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
đến đây thì dễ rồi bạn tự lập bảng xét nhé ;)
a) để bt trên là sn
=> \(3⋮\sqrt{x+1}\)
=>\(\sqrt{x+1}\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
ta có bảng
\(\sqrt{x+1}\) | 1 | -1 | 3 | -3 |
x | \(\varnothing̸\)(vì x e Z | 0 | 2 | \(\varnothing̸\)(vì x e Z |
=> \(x\in\left\{0;2\right\}\)
để biểu thức B nhận giá trị nguyên
=>\(5⋮1-2\sqrt{x}\)
=>\(1-2\sqrt{x}\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
ta có bảng
\(1-2\sqrt{x}\) | 1 | -1 | 5 | -5 |
x | 0 | \(\varnothing\) | \(\varnothing\) | \(\varnothing\) |
vậy x=0