\(\frac{x+1}{1-2x}\)có giá trị nguyên

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2018

Đặt \(A=\frac{x+1}{1-2x}=\frac{1+x}{1-2x}=\frac{1-2x+3x}{1-2x}=1+\frac{3x}{1-2x}\)

Vậy để A nguyên thì 

\(3x⋮1-2x\)

\(\Rightarrow3x⋮-2x+1\)

\(\Rightarrow x=1\)

22 tháng 4 2018

Bước cuối mình làm tắt

Vì \(3x⋮-2x+1\).Mà 3x chia hết cho -2x

\(\Rightarrow3x⋮1\)

=> x tùy ý

16 tháng 12 2016

a) \(Q=\frac{x+3}{2x+1}-\frac{x-7}{2x+1}\left(ĐK:x\ne-\frac{1}{2}\right)\)

\(=\frac{x+3-x+7}{2x+1}=\frac{10}{2x+1}\)

b) Để Q nguyên \(\Leftrightarrow\frac{10}{2x+1}\in Z\)

=> \(2x+1\inƯ\left(10\right)\)

=> \(2x+1\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\)

Ta có bảng sau:

2x+11-12-24-410-10
x0-1\(\frac{1}{2}\) (loại)\(-\frac{3}{2}\)(loại)\(\frac{3}{2}\)(loại)\(-\frac{5}{2}\)(loại)\(\frac{9}{2}\)(loại)\(-\frac{11}{2}\)(loại)

Vậy \(x\in\left\{0;-1\right\}\)

27 tháng 11 2017

Cái bảng chỗ 4 vs -4 sai r nhé
Chỗ đấy phải là 5 vs -5 chứ

15 tháng 7 2016

x+1 chia hết cho 2x+1

2x+2-2x-1 = 1

2x+1 (ư)1 = -1;1

x = -1; 0

25 tháng 12 2016

a, ĐKXĐ: x\(\ne\) 1;-1;2

b, A= \(\left(\frac{x}{x+1}+\frac{1}{x-1}-\frac{4x}{2-2x^2}\right):\frac{x+1}{x-2}\)

=\(\left(\frac{2x^2-2x}{2\left(x+1\right)\left(x-1\right)}+\frac{2x+2}{2\left(x+1\right)\left(x-1\right)}+\frac{4x}{2\left(x-1\right)\left(x+1\right)}\right)\times\frac{x-2}{x+1}\)

=\(\frac{2x^2-2x+2x+2+4x}{2\left(x+1\right)\left(x-1\right)}\times\frac{x-2}{x+1}\)

=\(\frac{2x^2+4x+2}{2\left(x+1\right)\left(x-1\right)}\times\frac{x-2}{x+1}\)

=\(\frac{2\left(x+1\right)^2}{2\left(x+1\right)\left(x-1\right)}\times\frac{x-2}{x+1}\)

=\(\frac{x-2}{x-1}\)

c, Khi x= -1

→A= \(\frac{-1-2}{-1-1}\)

= -3

Vậy khi x= -1 thì A= -3

Câu d thì mình đang suy nghĩ nhé, mình sẽ quay lại trả lời sau ^^

26 tháng 12 2016

a,ĐKXĐ:x#1; x#-1; x#2

b,Ta có:

A=\(\left(\frac{x}{x+1}+\frac{1}{x-1}-\frac{4x}{2-2x^2}\right):\frac{x+1}{x-2}\)

=\(\left(\frac{x\left(x-1\right)2}{\left(x+1\right)\left(x-1\right)2}+\frac{\left(x+1\right)2}{\left(x-1\right)\left(x+1\right)2}+\frac{4x}{2\left(x-1\right)\left(x+1\right)}\right):\frac{x+1}{x-2}\)

=\(\frac{2x^2-2x+2x+2+4x}{\left(x+1\right)\left(x-1\right)2}.\frac{x-2}{x+1}\)

=\(\frac{2x^2+4x+2}{\left(x+1\right)\left(x-1\right)2}.\frac{x-2}{x+1}\)

=\(\frac{2\left(x+1\right)^2}{\left(x+1\right)\left(x-1\right)2}.\frac{x-2}{x+1}\)

=\(\frac{x-2}{x+1}\)

c,Tại x=-1 ,theo ĐKXĐ x#-1 \(\Rightarrow\)A không có kết quả

d,Để A có giá trị nguyên \(\Rightarrow\frac{x-2}{x+1}\)có giá trị nguyên

\(\Leftrightarrow x-2⋮x+1\)

\(\Leftrightarrow x+1-3⋮x+1\)

\(x+1⋮x+1\Rightarrow3⋮x+1\)

\(\Rightarrow x+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)

\(\Rightarrow x\in\left\{0;-2;2;-4\right\}\)

Mà theo ĐKXĐ x#2\(\Rightarrow x\in\left\{0;-2;-4\right\}\)

Vậy \(x\in\left\{0;-2;-4\right\}\)thì a là số nguyên

2 tháng 8 2017

Để P nguyên => 2x^2 + 3x+3 chia hết cho 2x-1

   2x^2+3x+3 = x(2x-1)+4x+3. Vì x(2x-1)chia hết cho 2x-1 => 4x+3 chia hết cho 2x-1

=> 2(2x-1)+5. Do 2(2x-1) chia hết cho 2x-1 nên 5 chia hết cho 2x-1=> 2x-1 thuộc Ư(5)={+-1;+-5}.ta có bảng sau:

2x-11-15-5
x103-2

Vậy x thuộc{1;0;3;-2}  thì P nguyên
 

7 tháng 4 2019

\(P=\frac{2x^2-x+4x+3}{2x-1}=\frac{x\left(2x-1\right)+2\left(2x-1\right)+5}{2x-1}\)

\(=x+2+\frac{5}{2x-1}\).Do x nguyên nên x + 2 nguyên.

Để P nguyên thì 2x - 1 thuộc Ư(5).

Đến đây dễ rồi nhé.

19 tháng 6 2019

                                                                       Bài giải

                  Ta có : \(P=\frac{2x^2+3x+3}{2x-1}=\frac{x\left(2x-1\right)+x+3x+3}{2x-1}=\frac{x\left(2x-1\right)+4x+3}{2x-1}\)

\(=\frac{x\left(2x-1\right)+2\left(2x-1\right)+2+3}{2x-1}=\frac{\left(x+2\right)\left(2x-1\right)+5}{2x-1}=x+2+\frac{5}{2x-1}\)

Để \(P=\frac{2x^2+3x+3}{2x-1}\)nguyên  \(\Rightarrow\text{ }\frac{5}{2x-1}\) nguyên \(\Rightarrow\text{ }5\text{ }⋮\text{ }2x-1\)

                                                                                                 \(\Leftrightarrow\text{ }2x-1\inƯ\left(5\right)=\left\{\pm1\text{ ; }\pm5\right\}\)

Ta có bảng :                                  ( Vi không có dấu hoặc 4 cái nên mình lập bảng )

\(2x-1\) \(-1\) \(1\)\(-5\) \(5\)
\(x\) \(0\) \(1\) \(-2\) \(3\)

                  Vậy \(P\) có giá trị nguyên khi \(x\in\left\{0\text{ ; }1\text{ ; }-2\text{ ; }3\right\}\)

4 tháng 2 2020

\(ĐKXĐ:x\ne1\)

a) \(A=\left(1+\frac{x^2}{x^2+1}\right):\left(\frac{1}{x-1}-\frac{2x}{x^3+x-x^2-1}\right)\)

\(\Leftrightarrow A=\frac{2x^2+1}{x^2+1}:\left[\frac{1}{x-1}-\frac{2x}{x\left(x^2+1\right)-\left(x^2+1\right)}\right]\)

\(\Leftrightarrow A=\frac{2x^2+1}{x^2+1}:\left[\frac{1}{x-1}-\frac{2x}{\left(x^2+1\right)\left(x-1\right)}\right]\)

\(\Leftrightarrow A=\frac{2x^2+1}{x^2+1}:\frac{x^2+1-2x}{\left(x^2+1\right)\left(x-1\right)}\)

\(\Leftrightarrow A=\frac{2x^2+1}{x^2+1}:\frac{\left(x-1\right)^2}{\left(x^2+1\right)\left(x-1\right)}\)

\(\Leftrightarrow A=\frac{2x^2+1}{x^2+1}:\frac{x-1}{x^2+1}\)

\(\Leftrightarrow A=\frac{\left(2x^2+1\right)\left(x^2+1\right)}{\left(x^2+1\right)\left(x-1\right)}\)

\(\Leftrightarrow A=\frac{2x^2+1}{x-1}\)

b) Thay \(x=-\frac{1}{2}\)vào A, ta được :

\(A=\frac{2\left(-\frac{1}{2}\right)^2+1}{-\frac{1}{2}-1}\)

\(\Leftrightarrow A=\frac{\frac{3}{2}}{-\frac{3}{2}}\)

\(\Leftrightarrow A=-1\)

c) Để A < 1

\(\Leftrightarrow2x^2+1< x-1\)

\(\Leftrightarrow2x^2-x+2< 0\)

\(\Leftrightarrow2\left(x^2-\frac{1}{2}x+\frac{1}{16}\right)+\frac{15}{8}< 0\)

\(\Leftrightarrow2\left(x-\frac{1}{4}\right)^2+\frac{15}{8}< 0\)

\(\Leftrightarrow x\in\varnothing\)

Vậy để \(A< 1\Leftrightarrow x\in\varnothing\)

d) Để A có giá trị nguyên

\(\Leftrightarrow2x^2+1⋮x-1\)

\(\Leftrightarrow2x^2-2x+2x-2+3⋮x-1\)

\(\Leftrightarrow2x\left(x-1\right)+2\left(x-1\right)+3⋮x-1\)

\(\Leftrightarrow2\left(x+1\right)\left(x-1\right)+3⋮x-1\)

\(\Leftrightarrow3⋮x-1\)

\(\Leftrightarrow x-1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)

\(\Leftrightarrow x\in\left\{2;0;4;-2\right\}\)

Vậy để \(A\inℤ\Leftrightarrow x\in\left\{2;0;4;-2\right\}\)

23 tháng 7 2020

a) \(ĐKXĐ:x\ne\pm1\)

 \(Q=\frac{1}{2x-2}+\frac{1}{2x+2}+\frac{x^2}{1-x^2}\)

\(\Leftrightarrow Q=\frac{1}{2\left(x-1\right)}+\frac{1}{2\left(x+1\right)}-\frac{x^2}{\left(x-1\right)\left(x+1\right)}\)

\(\Leftrightarrow Q=\frac{x+1+x-1-2x^2}{2\left(x+1\right)\left(x-1\right)}\)

\(\Leftrightarrow Q=\frac{-2x^2+2x}{2\left(x+1\right)\left(x-1\right)}\)

\(\Leftrightarrow Q=\frac{-1}{x+1}\)

b) Khi \(\left|x+1\right|=2\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=2\\x+1=-2\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\left(ktm\right)\\x=-3\left(tm\right)\end{cases}}\)

Thay \(x=-3\)vào Q ta được :

 \(Q=\frac{-1}{-3+1}=\frac{1}{2}\)

c) Để \(Q\)có giá trị nguyên \(\Leftrightarrow-1⋮x+1\)

\(\Leftrightarrow x+1\inƯ\left(-1\right)=\left\{\pm1\right\}\)

\(\Leftrightarrow x\in\left\{-2;0\right\}\)

Vậy để Q có giá trị nguyên \(\Leftrightarrow x\in\left\{-2;0\right\}\)

23 tháng 7 2020

c) Bạn lấy mỗi giá trị nguyên nhỏ nhất của x = -2 thôi nhé !

Xin lỗi vì đọc nhầm đề