Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(M=\dfrac{8x+1}{4x-5}=\dfrac{8x-10+11}{4x-5}=\dfrac{2\left(x-5\right)+11}{4x-5}=2+\dfrac{11}{4x-5}\)
Để M nhận giá trị nguyên thì \(2+\dfrac{11}{4x-5}\) nhận giá trị nguyên
\(\Rightarrow\dfrac{11}{4x-5}\) nhận giá trị nguyên
\(\Rightarrow11⋮4x-5\)
Vì \(x\in Z\) nên \(4x-5\in Z\)
\(\Rightarrow4x-5\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
\(\Rightarrow x\in\left\{1;\pm1,5;4\right\}\)
Vậy \(x\in\left\{1;4\right\}\) thỏa mãn \(x\in Z\).
b) Ta có: \(A=\dfrac{5}{4-x}\). ĐK: \(x\ne4\)
Nếu 4 - x < 0 thì x > 4 \(\Rightarrow A>0\)
4 - x > 0 thì x < 4 \(\Rightarrow A< 0\)
Để A đạt GTLN thì 4 - x là số nguyên dương nhỏ nhất
\(\Rightarrow4-x=1\Rightarrow x=3\)
\(\Rightarrow A=\dfrac{5}{4-3}=5\)
Vậy MaxA = 5 tại x = 3
c) \(B=\dfrac{8-x}{x-3}\). ĐK: \(x\ne3\).
Ta có: \(B=\dfrac{8-x}{x-3}=\dfrac{-\left(x-8\right)}{x-3}=\dfrac{-\left(x-3\right)+5}{x-3}=\dfrac{5}{x-3}-1\)
Để B đạt giá trị nhỏ nhất thì \(\dfrac{5}{x-3}-1\) nhỏ nhất
\(\Rightarrow\dfrac{5}{x-3}\) nhỏ nhất
Nếu x - 3 > 0 thì x > 3 \(\Rightarrow\dfrac{5}{x-3}>0\)
x - 3 < 0 thì x < 3 \(\Rightarrow\dfrac{5}{x-3}< 0\)
Để \(\dfrac{5}{x-3}\) nhỏ nhất thì x - 3 là số nguyên âm lớn nhất
\(\Rightarrow x-3=-1\Rightarrow x=2\)
\(\Rightarrow B=\dfrac{8-2}{2-3}=-6\)
Vậy MaxB = -6 tại x = 2.
Mình làm sai câu a...
Ta có: \(M=\dfrac{8x+1}{4x-1}=\dfrac{8x-2+3}{4x-1}=\dfrac{2\left(4x-1\right)+3}{4x-1}=2+\dfrac{3}{4x-1}\)
Để M nhận giá trị nguyên thì \(2+\dfrac{3}{4x-1}\) nhận giá trị nguyên
\(\Rightarrow\dfrac{3}{4x-1}\) nhận giá trị nguyên
Vì \(4x-1\in Z\) nên \(4x-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow x\in\left\{\pm0,5;0;1\right\}\)
Vậy \(x\in\left\{0;1\right\}\) thỏa mãn \(x\in Z\).
\(\frac{8-x}{x-3}=\frac{-\left(x-3\right)+5}{x-3}=-1+\frac{5}{x-3}\)
Để biểu thức nhận giá trị nguyên <=>\(\frac{5}{x-3}\in Z\)
\(\Leftrightarrow5⋮\left(x-3\right)\)
\(\Leftrightarrow\left(x-3\right)\inƯ\left(5\right)\)
\(\Leftrightarrow\left(x-3\right)\in\left\{\pm1;\pm5\right\}\)
ta có bảng sau:
x-3 | -5 | -1 | 1 | 5 |
x | -2 | 2 | 4 | 8 |
Vậy \(x=\left\{-2;2;4;8\right\}\)
=> (8 - x)/(x - 5) ∈ Z
=> 8 - x chia hết cho x - 5
=> 3 - (x - 5) chia hết cho x - 5
=> 3 chia hết cho x - 5
=> x - 5 ∈ Ư(3) = (-3 ; -1 ; 1 ; 3)
=> x ∈ (2 ; 4 ; 6 ; 8)
vậy x ∈ (2 ; 4 ; 6 ; 8) mik ko chắc đâu
Ta có:\(A=\frac{8-x}{x-3}=\frac{5-x+3}{x-3}=\frac{5-\left(x-3\right)}{x-3}=\frac{5}{x-3}-1\)
Để A nguyên thì \(\frac{5}{x-3}\) nguyên
\(\Rightarrow5⋮\left(x-3\right)\)
\(\Rightarrow x-3\inƯ\left(5\right)=\left\{-5,-1,1,5\right\}\)
Để A nhỏ nhất thì \(x-3\) bé nhất và bé hơn 0 nên \(x-3=-5\Leftrightarrow x=-2\) thỏa mãn để A nhỏ nhất
a: Khi x=1 thì \(A=\dfrac{x-8}{x-3}=\dfrac{1-8}{1-3}=\dfrac{-7}{-2}=\dfrac{7}{2}\)
Khi x=2/11 thì \(A=\dfrac{\dfrac{2}{11}-8}{\dfrac{2}{11}-3}=\dfrac{-86}{11}:\dfrac{-31}{11}=\dfrac{86}{31}\)
b: Để A là số nguyên thì \(x-8⋮x-3\)
\(\Leftrightarrow x-3-5⋮x-3\)
\(\Leftrightarrow x-3\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{4;2;8;-2\right\}\)
-Để B có giá trị nhỏ nhất thì 8-x lớn nhất và x-3 nhỏ nhất
+) Để 8-x lớn nhất thì x nhỏ nhất => x=0
Thay vào ta có \(\frac{8-0}{0-3}=\frac{8}{-3}\)
Vậy x=0
\(\frac{3x+8}{x-1}=\frac{3x-3+11}{x-1}=3+\frac{11}{x-1}\inℤ\Leftrightarrow\frac{11}{x-1}\inℤ\)
mà \(x\)là số nguyên nên \(x-1\inƯ\left(11\right)=\left\{-11,-1,1,11\right\}\)
\(\Leftrightarrow x\in\left\{-10,0,2,12\right\}\).
\(\frac{3x+8}{x-1}\)=3+\(\frac{11}{x-1}\)
Điều kiện xác định: x\(\ne\)1
Để \(\frac{3x+8}{x-1}\)nguyên thì 3+\(\frac{11}{x-1}\)cũng phải nguyên
=> \(\frac{11}{x-1}\) nguyên => x-1 chia hết cho 11
=> x-1 thuộc ước của 11 \(\Rightarrow\)x-1 thuộc {1;11}
x-1=11\(\Rightarrow\)x=12 (thỏa mãn đk)
x-1=1 \(\Rightarrow\)x=2 (thỏa mãn đk)
Vậy x=2;12 thì \(\frac{3x+8}{x-1}\)nguyên
Để \(\frac{8}{x-3}\)có giá tri nguyên
thì 8 chia hết cho x - 3
=> x - 3 thuộc Ư ( 8 )
Mà Ư ( 8 ) = { - 8 ; - 4 ; - 2 ; - 1 ; 1 ; 2 ; 4 ; 8 }
Ta có bảng sau:
Vậy x = { - 5 ; - 1 ; 1 ; 2 ; 4 ; 5 ; 7 ; 11 } thỏa mãn yêu cầu đề bài
X={-5,-1,1,2,4,5,7,11} thỏa mãn yêu cầu của đề