K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2019

Em đặt : \(x^2+x-2=t\)

=> \(x^2+x-3=x^2+x-2-1=t-1\)

Ta có phương trình ẩn t 

\(t\left(t-1\right)=12\)

<=> \(t^2-t-12=0\)

<=> \(t^2-4t+3t-12=0\)

<=> \(\left(t+3\right)\left(t-4\right)=0\)

<=> t = - 3 hoặc t = 4

Với t = - 3 ta có: \(x^2+x-2=-3\)

Em làm tiếp nhé!

3 tháng 6 2021

Thay : \(x=3\) vào phương trình :

\(12-2\cdot\left(1-3\right)^2=4\cdot\left(3-m\right)-\left(3-3\right)\cdot\left(2\cdot3+5\right)\)

\(\Leftrightarrow12-8=12-4m\)

\(\Leftrightarrow4m=8\)

\(\Leftrightarrow m=2\)

3 tháng 6 2021

mình cảm ơn ạ:>

\(\Leftrightarrow\left(2x-1\right)^3-\left(2x+3\right)^3-3\left(3x+1\right)^2-2\left(x-2\right)^2+\left(x-1\right)\left(x+2\right)=0\)

\(\Leftrightarrow8x^3-12x^2+6x-1-8x^3-36x^2-54x-27-3\left(9x^2+6x+1\right)-2\left(x^2-4x+4\right)+x^2+x-2=0\)

\(\Leftrightarrow-48x^2-48x-28-27x^2-18x-3-2x^2+8x-8+x^2+x-2=0\)

\(\Leftrightarrow-76x^2-57x-41=0\)

\(\Leftrightarrow76x^2+57x+41=0\)

\(\text{Δ}=57^2-4\cdot76\cdot41=-9215< 0\)

Vậy: Phương trình vô nghiệm

31 tháng 8 2016

(x -2)\(^3\) +(3x-2)\(^2\) -5x (x+1) = (1+x)\(^3\) - 2(2x+1)\(^2\)

<=> (x\(^3\) -3.x\(^2\).2+3.x.2\(^2\) -2\(^3\)) + [(3x)\(^2\) - 2.3x.2 +2\(^2\)] - (5x.x+ 5x .1) = (1\(^3\) + 3.1\(^2\).x+ 3.1.x\(^2\) + x\(^3\) )- [2((2x)\(^2\) +2.2x.1+ 1\(^2\))]

<=> (x\(^3\) - 6x\(^2\) + 12x - 8) + (9x\(^2\) -12x+ 4)- (5x\(^2\) + 5x) = (1+3x + 3x\(^2\) + x\(^3\)) - [ 2.(4x\(^2\) + 4x +1]= (1+3x + 3x\(^2\) + x\(^3\)) - ( 8x\(^2\)+ 8x +2)

<=> x\(^3\) - 6x\(^2\) + 12x - 8 + 9x\(^2\) -12x+ 4 - 5x\(^2\) - 5x        = 1+3x + 3x\(^2\) + x\(^3\) -  8x\(^2\) -8x - 2

<=>  x\(^3\) +(- 6x\(^2\) + 9x\(^2\) - 5x\(^2\)+(12x- 12x - 5x) + (-8 +4) = (1-2) + ( 3x-8x) +( 3x\(^2\)  8x\(^2\) ) + x\(^3\)

<=>   x\(^3\) +( -2x\(^2\)) + (-5x) + (-4) = -1 + (-5x) +( -5x\(^2\))+ x\(^3\)<=> x\(^3\) -2x\(^2\) -5x-4= -1 - 5x - 5x\(^2\) +x\(^3\)<=> -2x\(^2\) -4 = -1 -5x\(^2\)<=> -2x\(^2\) + 5x\(^2\) = -1 +4  ( chuyển vế )<=> 3x\(^2\) = 3<=> x\(^2\) = 3:3<=> x\(^2\) = 1<=> x = \(\sqrt{1}\)<=> x= 1               CHÚC BẠN HỌC TỐT  
21 tháng 10 2016

\(\left|x+\frac{1}{2}\right|\ge0;\left|x+\frac{1}{6}\right|\ge0;\left|x+\frac{1}{12}\right|\ge0;...;\left|x+\frac{1}{110}\right|\ge0\)

\(\Rightarrow11x\ge0\)

\(\Rightarrow x\ge0\)

Với \(x\ge0\) ta có:

\(\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{6}\right)+\left(x+\frac{1}{12}\right)+...+\left(x+\frac{1}{110}\right)=11x\)

\(\Rightarrow\left(x+\frac{1}{1.2}\right)+\left(x+\frac{1}{2.3}\right)+\left(x+\frac{1}{3.4}\right)+...+\left(x+\frac{1}{10.11}\right)=11x\)

\(\Rightarrow\left(x+x+x+...+x\right)+\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\right)=11x\)

10 số x

\(\Rightarrow10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\right)=11x\)

\(\Rightarrow1-\frac{1}{11}=11x-10x\)

\(\Rightarrow x=\frac{10}{11}\)

Vậy \(x=\frac{10}{11}\)

6 tháng 9 2016

\(\left(2x-1\right)^3-3\left(1-3x\right)^2=\left(3+2x\right)^3-2\left(x-2\right)\left(x+3\right)\)

\(8x^3-12x^2+6x-1-3\left(1-6x+9x^2\right)=27+54x+36x^2+8x^3-2\left(x^2+3x-2x-6\right)\)\(8x^3-12x^2+6x-1-3+18x-27x^2=27+54x+36x^2+8x^3-2x^2-6x+4x+12\)\(8x^3-39x^2+24x-4=8x^3+34x^2+52x+39\)

\(8x^3-39x^2+24x-4-8x^3-34x^2-52x-39=0\)

\(-73x^2-28x-43=0\)

         Vậy đa thức vô nghiệm

 

 

 

17 tháng 8 2016

phân tích theo hằng đẳng thức rồi rút gọn là ra thôi bạn

a/ \(x=\dfrac{-5}{12}\)

b/ \(x\approx-1,9526\)

c/ \(x=\dfrac{21-i\sqrt{199}}{10}\)

d/ \(x=\dfrac{-20}{13}\)

25 tháng 7 2021

a) (x-2)3+6(x+1)2-x3+12=0

⇒ x3-6x2+12x-8+6(x2+2x+1)-x3+12=0

⇒ x3-6x2+12x-8+6x2+12x+6-x3+12=0

⇒ 24x+10=0

⇒ 24x=-10

⇒ x=-5/12

\(\Leftrightarrow20\left(x^2-4x+3\right)-24\left(4x^2-4x+1\right)=15\left(9x^2+6x+1\right)+90x\left(x-1\right)\)

\(\Leftrightarrow20x^2-80x+60-96x^2+96x-24=135x^2+90x+15+90x^2-90x\)

\(\Leftrightarrow-301x^2+16x+21=0\)

\(\text{Δ}=16^2-4\cdot\left(-301\right)\cdot21=25540\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là 

\(\left\{{}\begin{matrix}x_1=\dfrac{-16-\sqrt{25540}}{-602}=\dfrac{16+\sqrt{25540}}{602}\\x_2=\dfrac{16-\sqrt{25540}}{602}\end{matrix}\right.\)