Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\left|x-3,5\right|\ge0\); \(\left|4,5-x\right|\ge0\)
=> \(\left|x-3,5\right|+\left|4,5-x\right|\ge0\)
Mà theo đề bài: \(\left|x-3,5\right|+\left|4,5-x\right|=0\)
=> \(\begin{cases}\left|x-3,5\right|=0\\\left|4,5-x\right|=0\end{cases}\)=> \(\begin{cases}x-3,5=0\\4,5-x=0\end{cases}\)=> \(\begin{cases}x=3,5\\x=4,5\end{cases}\), vô lý vì x không thể cùng đồng thời nhận 2 giá trị khác nhau
Vậy không tồn tại giá trị của x thỏa mãn đề bài
3,5 + /x + \(\frac{3}{2}\) / = -1,5(-\(\sqrt{9}\))
=> 3,5 +/ x +\(\frac{3}{2}\) / = -1,5 ( -3 )
=> 3,5 + / x + \(\frac{3}{2}\) / =4,5
=> / x + \(\frac{3}{2}\) / = 4,5 - 3,5
=> / x + \(\frac{3}{2}\) / = 1
=> \(\hept{\begin{cases}x+\frac{3}{2}=1\\x+\frac{3}{2}=-1\end{cases}}\)
=> \(\hept{\begin{cases}x=1-\frac{3}{2}\\x=-1-\frac{3}{2}\end{cases}}\)
=> \(\hept{\begin{cases}x=\frac{-1}{2}\\x=\frac{-5}{2}\end{cases}}\)
vậy x = \(\frac{-1}{2}\)hay x = \(\frac{-5}{2}\)
\(3,5+\left|x+\frac{3}{2}\right|=-1,5.\left(-\sqrt{9}\right)\) \(3,5+\left|x+\frac{3}{2}\right|=-1,5.\left(-3\right)\) \(3,5+\left|x+\frac{3}{2}\right|=4,5\) \(\left|x+\frac{3}{2}\right|=4,5-3,5\) \(\left|x+\frac{3}{2}\right|=1\) \(\Rightarrow\orbr{\begin{cases}x+\frac{3}{2}=1\\x+\frac{3}{2}=-1\end{cases}}\) \(\Rightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=-\frac{5}{2}\end{cases}}\) Vậy x=\(-\frac{1}{2}\) hoặc x=\(-\frac{5}{2}\)
Bài 1:a/ 1.6-Ix-0.2I=0
Có 2 trường hợp:
TH1: x-0.2=1.6
=> x=1.6+0.2=1.8
TH2: x-0.2=-1.6
=> x=-1.4
b/ Có 2 trường hợp:
TH1:x-1.5=0=>x=1.5
TH2: 2.5-x=0=> x=2.5
Bài 2: a/ Vì Ix-3.5I\(\ge0\)
=> Amax=0.5-0=0.5 khi x=3.5
b/ Vì -I1.4-xI \(\le0\)
Nên Bmax=0-2=-2 khi x=1.4
\(\Rightarrow x+\dfrac{2}{3}x=1,5+3,5\Rightarrow\dfrac{5}{3}x=5\Rightarrow x=5:\dfrac{5}{3}=3\)
\(3,5+\left|x+\dfrac{3}{2}\right|=-1,5\cdot\left(-\sqrt{9}\right)\)
\(3,5+\left|x+\dfrac{3}{2}\right|=-1,5\cdot\left(-3\right)\)
\(3,5+\left|x+\dfrac{3}{2}\right|=4,5\)
\(\left|x+\dfrac{3}{2}\right|=4,5-3,5\)
\(\left|x+\dfrac{3}{2}\right|=1\)
\(\Rightarrow x+\dfrac{3}{2}=1\) hoặc \(x+\dfrac{3}{2}=-1\)
\(x=1-\dfrac{3}{2}\) \(x=-1-\dfrac{3}{2}\)
\(x=\dfrac{-1}{2}\) \(x=\dfrac{-5}{2}\)
Vậy \(x=\dfrac{-1}{2}\)hoặc \(x=\dfrac{-5}{2}\)
\(3,5+\left|x+\dfrac{3}{2}\right|=-1,5.\left(-\sqrt{9}\right)\)
\(\Rightarrow3,5+\left|x+\dfrac{3}{2}\right|=4,5\)
\(\Rightarrow\left|x+\dfrac{3}{2}\right|=4,5-3,5=1\)
\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{3}{2}=1\\x+\dfrac{3}{2}=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1-\dfrac{3}{2}\\x=-1-\dfrac{3}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x=\dfrac{-5}{2}\end{matrix}\right.\)
Vậy..................
\(n^{150}< 5^{225}\)
\(\Rightarrow n^{150}=\left(n^2\right)^{75}\)
\(\Leftrightarrow\left(n^2\right)^{75}< \left(5^3\right)^{75}\)
\(\Rightarrow n^2< 125\)
\(\Rightarrow n< 12\)
\(\left|x-3,5\right|+\left|4,5-x\right|=0\)
\(\Rightarrow\left|x-3,5\right|=\left|4,5-x\right|\)
\(\Rightarrow x-3,5=4,5-x\)
\(\Rightarrow x+x=4,5+3,5\)
\(\Rightarrow2x=8\)
\(\Rightarrow x=4\)
Ta có \(:\)\(\left(x-3,5\right)^2\ge0\forall x\in R\)
Để \(\left(x-3,5\right)^2+1\)nhỏ nhất \(\Leftrightarrow\left(x-3,5\right)^2=0\Rightarrow x=3,5\)
\(\Rightarrow\left(x-3,5\right)^2+1=0+1=1\)
Vậy giá trị nhỏ nhất của \(\left(x-3,5\right)^2+1\)là \(1\)tại \(x=3,5\)
a. ta có :
\(\hept{\begin{cases}\left|x-1\right|+\left|x-4\right|\ge\left|x-1-x+4\right|=3\\\left|x-2\right|+\left|x-3\right|\ge\left|x-2-x+3\right|=1\\\left|2x-5\right|\ge0\end{cases}}\)
Vậy phương trình ban đầu có nghiệm \(\Rightarrow2x-5=0\Leftrightarrow x=\frac{5}{2}\)thay lại thấy thỏa mãn . Vậy x=5/2 là nghiệm
b.ta có
\(\hept{\begin{cases}\left|x+1\right|+\left|x-1\right|\ge\left|x+1-x+1\right|=2\\\left|x+2\right|+\left|x-5\right|\ge\left|x+2-x+5\right|=7\\\left|3x+2\right|\ge0\end{cases}}\)
Vậy phương trình ban đầu có nghiệm \(\Rightarrow3x+2=0\Leftrightarrow x=-\frac{2}{3}\)thay lại thấy thỏa mãn . Vậy x=-2/3 là nghiệm
Vô nhiệm nhé bạn
Vì giá trị tuyệt đối luôn luôn lớn hơn hoặc = 0
mà vế phải lại < 0
xin tiick