K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2015

13/2x+1 nguyên => 13 chia hết cho 2x + 1

=> 2x + 1 \(\in\) {-13;-1;1;13}

.......................................................

 

27 tháng 8 2020

a) Ta có: \(A=\frac{2x-5}{x+1}=\frac{\left(2x+2\right)-7}{x+1}=2-\frac{7}{x+1}\)

Để A nguyên => \(\frac{7}{x+1}\inℤ\) => \(\left(x+1\right)\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

=> \(x\in\left\{-8;-2;0;6\right\}\)

b) Ta có: \(B=\frac{x+1}{3x+1}\) => \(3B=\frac{3x+3}{3x+1}=\frac{\left(3x+1\right)+2}{3x+1}=1+\frac{2}{3x+1}\)

Để B nguyên => \(\frac{2}{3x+1}\inℤ\Rightarrow\left(3x+1\right)\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

=> \(3x\in\left\{-3;-2;0;1\right\}\) => \(x\in\left\{-1;-\frac{2}{3};0;\frac{1}{3}\right\}\)

Mà x nguyên => \(x\in\left\{-1;0\right\}\)

Thử lại ta thấy đều thỏa mãn

Vậy \(x\in\left\{-1;0\right\}\)

27 tháng 8 2020

Ta có : \(\frac{2x-5}{x+1}=\frac{2x+2-7}{x+1}=\frac{2\left(x+1\right)-7}{x+1}=2-\frac{7}{x+1}\)

Vì \(2\inℤ\Rightarrow\frac{-7}{x+1}\inℤ\Rightarrow-7⋮x+1\Rightarrow x+1\inƯ\left(-7\right)\Rightarrow x+1\in\left\{1;7;-1;-7\right\}\)

=> \(x\in\left\{0;6;-2;-8\right\}\)

Vậy  \(x\in\left\{0;6;-2;-8\right\}\) 

b) Để B nguyên

=> 3B nguyên

Khi đó 3B = \(\frac{3\left(x+1\right)}{3x+1}=\frac{3x+3}{3x+1}=\frac{3x+1+2}{3x+1}=1+\frac{2}{3x+1}\)

Vì \(1\inℤ\Rightarrow\frac{2}{3x+1}\inℤ\Rightarrow2⋮3x+1\Rightarrow3x+1\inƯ\left(2\right)\Rightarrow3x+1\in\left\{1;2;-2;-1\right\}\)

=> \(3x\in\left\{0;1;-3;-2\right\}\Rightarrow x\in\left\{0;\frac{1}{3};-1;\frac{-2}{3}\right\}\)

Vì x nguyên 

=> \(x\in\left\{0;-1\right\}\)

Vậy \(x\in\left\{0;-1\right\}\)

30 tháng 7 2016

Để \(\frac{13}{2x^2+5}\)nhận giá trị nguyên thì

Vì \(x^2\ge0\Rightarrow2x^2\ge0\Rightarrow2x^2+5\ge5\)

 \(\Rightarrow2x^2+5=13\)

\(\Rightarrow2x^2=8\)

\(\Rightarrow x^2=4\)

\(\Rightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)

21 tháng 6 2019

Bài 1:

a) \(x=\frac{a+1}{a+9}=\frac{a+9-8}{a+9}=\frac{a+9}{a+9}-\frac{8}{a+9}=1-\frac{8}{a+9}\)

Để \(x\in Z\)thì \(a+9\inƯ\left(8\right)=\left\{-8;-4;-2;-1;1;2;4;8\right\}\)

Vậy \(a\in\left\{-17;-13;-11;-10;-8;-7;-5;-1\right\}\)

b) \(x=\frac{a-1}{a+4}=\frac{a+4-5}{a+4}=\frac{a+4}{a+4}-\frac{5}{a+4}=1-\frac{5}{a+4}\)

Để \(x\in Z\)thì \(a+4\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)

Vậy \(a\in\left\{-9;-5;-3;1\right\}\)

Bài 2:

a) \(t=\frac{3x-8}{x-5}=\frac{3x-15}{x-5}+\frac{7}{x-5}=\frac{3\left(x-5\right)}{x-5}+\frac{7}{x-5}=3+\frac{7}{x-5}\)

Để \(t\in Z\)thì \(x-5\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Vậy \(x\in\left\{-2;4;6;12\right\}\)

b)\(q=\frac{2x+1}{x-3}=\frac{2x-6}{x-3}+\frac{7}{x-3}=\frac{2\left(x-3\right)}{x-3}+\frac{7}{\left(x-3\right)}=2+\frac{7}{x-3}\)

Để \(q\in Z\)thì \(x-3\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Vậy \(x\in\left\{-4;2;4;10\right\}\)

c)\(p=\frac{3x-2}{x+3}=\frac{3x+9}{x+3}-\frac{11}{x+3}=\frac{3\left(x+3\right)}{x+3}-\frac{11}{x+3}=3-\frac{11}{x+3}\)

Để \(p\in Z\)thì \(x+3\inƯ\left(11\right)=\left\{-11;-1;1;11\right\}\)

Vậy \(x\in\left\{-14;-4;-2;8\right\}\)

Bài 3:

Gọi \(d\inƯC\left(2m+9;14m+62\right)\)

\(\Rightarrow\hept{\begin{cases}\left(2m+9\right)⋮d\\\left(14m+62\right)⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}7\left(2m+9\right)⋮d\\\left(14m+62\right)⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\left(14m+63\right)⋮d\\\left(14m+62\right)⋮d\end{cases}}\)

\(\Rightarrow\left[\left(14m+63\right)-\left(14m+62\right)\right]⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯC\left(2m+9;14m+62\right)=1\)

Vậy \(x=\frac{2m+9}{14m+62}\)là p/s tối giản

21 tháng 7 2019

a, Để phân số đạt giá trị nguyễn 

\(\Rightarrow x+1⋮x-2\)

\(\Rightarrow x-2+3⋮x-2\)

mà \(x-2⋮x-2\Rightarrow3⋮x-2\)

\(\Rightarrow x-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Rightarrow x\in\left\{3;5\pm1\right\}\)

21 tháng 7 2019

b,Tương tự :

\(2x-1⋮x+5\)

\(\Rightarrow2x+10-11⋮x+5\)

\(2\left(x+5\right)-11⋮x+5\)

mà \(2\left(x+5\right)⋮x+5\Rightarrow11⋮x+5\)

\(\Rightarrow x+5\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)

\(x\in\left\{-4;\pm6;-16\right\}\)