Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(A=\frac{2x-5}{x+1}=\frac{\left(2x+2\right)-7}{x+1}=2-\frac{7}{x+1}\)
Để A nguyên => \(\frac{7}{x+1}\inℤ\) => \(\left(x+1\right)\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
=> \(x\in\left\{-8;-2;0;6\right\}\)
b) Ta có: \(B=\frac{x+1}{3x+1}\) => \(3B=\frac{3x+3}{3x+1}=\frac{\left(3x+1\right)+2}{3x+1}=1+\frac{2}{3x+1}\)
Để B nguyên => \(\frac{2}{3x+1}\inℤ\Rightarrow\left(3x+1\right)\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
=> \(3x\in\left\{-3;-2;0;1\right\}\) => \(x\in\left\{-1;-\frac{2}{3};0;\frac{1}{3}\right\}\)
Mà x nguyên => \(x\in\left\{-1;0\right\}\)
Thử lại ta thấy đều thỏa mãn
Vậy \(x\in\left\{-1;0\right\}\)
Ta có : \(\frac{2x-5}{x+1}=\frac{2x+2-7}{x+1}=\frac{2\left(x+1\right)-7}{x+1}=2-\frac{7}{x+1}\)
Vì \(2\inℤ\Rightarrow\frac{-7}{x+1}\inℤ\Rightarrow-7⋮x+1\Rightarrow x+1\inƯ\left(-7\right)\Rightarrow x+1\in\left\{1;7;-1;-7\right\}\)
=> \(x\in\left\{0;6;-2;-8\right\}\)
Vậy \(x\in\left\{0;6;-2;-8\right\}\)
b) Để B nguyên
=> 3B nguyên
Khi đó 3B = \(\frac{3\left(x+1\right)}{3x+1}=\frac{3x+3}{3x+1}=\frac{3x+1+2}{3x+1}=1+\frac{2}{3x+1}\)
Vì \(1\inℤ\Rightarrow\frac{2}{3x+1}\inℤ\Rightarrow2⋮3x+1\Rightarrow3x+1\inƯ\left(2\right)\Rightarrow3x+1\in\left\{1;2;-2;-1\right\}\)
=> \(3x\in\left\{0;1;-3;-2\right\}\Rightarrow x\in\left\{0;\frac{1}{3};-1;\frac{-2}{3}\right\}\)
Vì x nguyên
=> \(x\in\left\{0;-1\right\}\)
Vậy \(x\in\left\{0;-1\right\}\)
Để \(\frac{13}{2x^2+5}\)nhận giá trị nguyên thì
Vì \(x^2\ge0\Rightarrow2x^2\ge0\Rightarrow2x^2+5\ge5\)
\(\Rightarrow2x^2+5=13\)
\(\Rightarrow2x^2=8\)
\(\Rightarrow x^2=4\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
Bài 1:
a) \(x=\frac{a+1}{a+9}=\frac{a+9-8}{a+9}=\frac{a+9}{a+9}-\frac{8}{a+9}=1-\frac{8}{a+9}\)
Để \(x\in Z\)thì \(a+9\inƯ\left(8\right)=\left\{-8;-4;-2;-1;1;2;4;8\right\}\)
Vậy \(a\in\left\{-17;-13;-11;-10;-8;-7;-5;-1\right\}\)
b) \(x=\frac{a-1}{a+4}=\frac{a+4-5}{a+4}=\frac{a+4}{a+4}-\frac{5}{a+4}=1-\frac{5}{a+4}\)
Để \(x\in Z\)thì \(a+4\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
Vậy \(a\in\left\{-9;-5;-3;1\right\}\)
Bài 2:
a) \(t=\frac{3x-8}{x-5}=\frac{3x-15}{x-5}+\frac{7}{x-5}=\frac{3\left(x-5\right)}{x-5}+\frac{7}{x-5}=3+\frac{7}{x-5}\)
Để \(t\in Z\)thì \(x-5\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Vậy \(x\in\left\{-2;4;6;12\right\}\)
b)\(q=\frac{2x+1}{x-3}=\frac{2x-6}{x-3}+\frac{7}{x-3}=\frac{2\left(x-3\right)}{x-3}+\frac{7}{\left(x-3\right)}=2+\frac{7}{x-3}\)
Để \(q\in Z\)thì \(x-3\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Vậy \(x\in\left\{-4;2;4;10\right\}\)
c)\(p=\frac{3x-2}{x+3}=\frac{3x+9}{x+3}-\frac{11}{x+3}=\frac{3\left(x+3\right)}{x+3}-\frac{11}{x+3}=3-\frac{11}{x+3}\)
Để \(p\in Z\)thì \(x+3\inƯ\left(11\right)=\left\{-11;-1;1;11\right\}\)
Vậy \(x\in\left\{-14;-4;-2;8\right\}\)
Bài 3:
Gọi \(d\inƯC\left(2m+9;14m+62\right)\)
\(\Rightarrow\hept{\begin{cases}\left(2m+9\right)⋮d\\\left(14m+62\right)⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}7\left(2m+9\right)⋮d\\\left(14m+62\right)⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\left(14m+63\right)⋮d\\\left(14m+62\right)⋮d\end{cases}}\)
\(\Rightarrow\left[\left(14m+63\right)-\left(14m+62\right)\right]⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯC\left(2m+9;14m+62\right)=1\)
Vậy \(x=\frac{2m+9}{14m+62}\)là p/s tối giản
a, Để phân số đạt giá trị nguyễn
\(\Rightarrow x+1⋮x-2\)
\(\Rightarrow x-2+3⋮x-2\)
mà \(x-2⋮x-2\Rightarrow3⋮x-2\)
\(\Rightarrow x-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow x\in\left\{3;5\pm1\right\}\)
13/2x+1 nguyên => 13 chia hết cho 2x + 1
=> 2x + 1 \(\in\) {-13;-1;1;13}
.......................................................