K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2015

ĐKXĐ:\(x\ge0\)\(x\ne9\)

ta có: \(\frac{\sqrt{x}+1}{\sqrt{x}-3}\in N\)

\(\Leftrightarrow1+\frac{4}{\sqrt{x}-3}\in N\)

để \(1+\frac{4}{\sqrt{x}-3}\)có giá trị nguyên dương thì 4 phải chia hết cho \(\sqrt{x}-3\)

\(\Rightarrow\sqrt{x}-3=\left\{-4;-2;-1;1;2;4\right\}\)

*\(\sqrt{x}-3=-4\Leftrightarrow\sqrt{x}=-1\)(vô lí)

*\(\sqrt{x}-3=-2\Leftrightarrow x=1\)

*\(\sqrt{x}-3=-1\Leftrightarrow x=4\)

*\(\sqrt{x}-3=1\Leftrightarrow x=16\)

*\(\sqrt{x}-3=2\Leftrightarrow x=25\)

*\(\sqrt{x}-3=4\Leftrightarrow x=49\)

vậy \(x\in\left\{1;4;16;25;49\right\}\) thì \(\frac{\sqrt{x}+1}{\sqrt{x-3}}\)có giá trị nguyên dương

 

30 tháng 10 2017

B=\(\frac{\sqrt{x}-3+4}{\sqrt{x}-3}\)

B = \(1+\frac{4}{\sqrt{x}-3}\)

để B có giá trị dương thì 4\(⋮\)\(\sqrt{x}-3\) và \(\sqrt{x}-3\ge0\)

=> \(\sqrt{x}-3\)\(\in\)Ư(4)=(1;-1;4;-4) mà \(\sqrt{x}-3\ge0\)nên  \(\sqrt{x}-3\in\left(1;4\right)\)

\(\sqrt{x}\)\(\in\)(4;7)

\(\in\)(16;49)

Để câu trả lời của bạn nhanh chóng được duyệt và hiển thị, hãy gửi câu trả lời đầy đủ và không nên:

  • Yêu cầu, gợi ý các bạn khác chọn (k) đúng cho mình
  • Chỉ ghi đáp số mà không có lời giải, hoặc nội dung không liên quan đến câu hỏi.
20 tháng 1 2019

ĐK: \(x\ge-1;x\ne3\)

\(B^2=\frac{x+1}{x-3}=\frac{x-3+4}{x-3}=1+\frac{4}{x-3}\)

Để \(B^2\) có giá trị nguyên dương thì \(\frac{4}{x-3}\) có giá trị nguyên dương.Tức là x - 3 > 0

Và \(x-3\inƯ\left(4\right)=\left\{1;2;4\right\}\)

Suy ra \(x\in\left\{4;5;7\right\}\).Để B có giá trị nguyên dương thì \(B^2\) là số chính phương.

Với x = 4: \(B^2=1+\frac{4}{x-3}=1+4=5\) (loại)

Với x = 5: \(B^2=1+\frac{4}{x-3}=1+2=3\)(loại)

Với x = 7: \(B^2=1+\frac{4}{x-3}=1+1=2\)(loại)

Vậy không có giá trị nào của x thuộc Z đề B có giá trị nguyên dương.

10 tháng 12 2016

Khai triển :

\(A=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)

Ta có :

A nguyên

<=> 1+\(\frac{4}{\sqrt{x}-3}\) nguyên

<=> \(\frac{4}{\sqrt{x}-3}\) nguyên

<=> \(\sqrt{x}-3\inƯ_{\left(4\right)}\)

<=> \(\sqrt{x}-3\in\left\{1;2;4;-1;-2;-4\right\}\)

<=> \(\sqrt{x}\in\left\{4;5;7;2;1;-1\right\}\)

\(\sqrt{x}\ge0\forall x\)

=> \(\sqrt{x}\in\left\{4;5;7;2;1\right\}\)

=> \(x\in\left\{16;25;49;4;1\right\}\)

Vậy \(x\in\left\{16;25;49;4;1\right\}\)

10 tháng 12 2016

\(A=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=\frac{\sqrt{x}-3}{\sqrt{x}-3}+\frac{4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\in Z\)

\(\Rightarrow4⋮\sqrt{x}-3\)

\(\Rightarrow\sqrt{x}-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

24 tháng 10 2016

x-3=k^2

x=k^2+3

x+1-k=t^2

k^2+4-k=t^2

(2k-1)^2+15=4t^2

(2k-1-2t)(2k-1+2t)=-15=-1.15=-3*5

---giải phương trình nghiệm nguyên với k,t---

TH1. [2(k-t)-1][2(k+t)-1]=-1.15

2(k-t)-1=-1=> k=t

4t-1=15=>t=4    nghiệm (-4) loại luôn

với k=4=> x=19 thử lại B=căn (19+1-can(19-3))=can(20-4)=4 nhận

TH2. mà có bắt tìm hết đâu

x=19 ok rồi

24 tháng 10 2016

ô hay vừa giải xong mà

x=k^2+3

với k là nghiệm nguyên của phương trình

k^2-k+4=t^2

bắt tìm hết hạy chỉ một

x=19 là một nghiệm