Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)
\(\left(\frac{x+4}{2000}+1\right)+\left(\frac{x+3}{2001}+1\right)=\left(\frac{x+2}{2002}+1\right)+\left(\frac{x+1}{2003}+1\right)\)
\(\left(\frac{x+4}{2000}+\frac{2000}{2000}\right)+\left(\frac{x+3}{2001}+\frac{2001}{2001}\right)=\left(\frac{x+2}{2002}+\frac{2002}{2002}\right)+\left(\frac{x+1}{2003}+\frac{2003}{2003}\right)\)
\(\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)
\(\frac{x+2004}{2000}+\frac{x+2004}{2001}-\frac{x+2004}{2002}-\frac{x+2004}{2003}=0\)
\(x+2004\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)
Ta thấy \(\frac{1}{2000}>\frac{1}{2001}>\frac{1}{2002}>\frac{1}{2003}\)
nên \(\left(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}+\frac{1}{2003}\right)\ne0\)
Do đó: x + 2004 = 0 => x = -2004
Vậy x = -2004
\(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)
\(\Rightarrow\frac{x+4}{2000}+1+\frac{x+3}{2001}+1=\frac{x+2}{2002}+1+\frac{x+1}{2003}+1\)
\(\Rightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}-\frac{x+2004}{2002}-\frac{x+2004}{2003}=0\)
\(\Leftrightarrow\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)
Vì \(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\ne0\)
Nên x + 2004 = 0
=> x = -2004
Vậy x = -2004
\(\frac{x-1}{1}+\frac{x-1}{2}=\frac{x}{3}+\frac{x}{4}-\frac{7}{12}\)
\(\Leftrightarrow\frac{12x-12}{12}+\frac{6x-6}{12}=\frac{4x}{12}+\frac{3x}{12}-\frac{7}{12}\)
Khử mẫu : \(12x-12+6x-6=4x+3x-7\)
\(\Leftrightarrow18x-18=7x-7\Leftrightarrow11x=11\Leftrightarrow x=1\)
\(\frac{x-1}{1}+\frac{x-1}{2}=\frac{x}{3}+\frac{x}{4}-\frac{7}{12}\)
\(\Leftrightarrow\frac{12x-12}{12}+\frac{6x-6}{12}=\frac{4x}{12}+\frac{3x}{12}-\frac{7}{12}\)
\(\Leftrightarrow\frac{12x-12+6x-6}{12}=\frac{4x+3x-7}{12}\)
\(\Leftrightarrow18x-18=7x-7\)
\(\Leftrightarrow18x+7x=18+7\)
\(\Leftrightarrow25x=25\)
\(\Leftrightarrow x=1\)
\(\frac{x-1}{1}+\frac{x-1}{2}=\frac{x-1}{3}+\frac{x-1}{4}+\frac{x-1}{5}\)
\(\Leftrightarrow\frac{x-1}{1}+\frac{x-1}{2}-\frac{x-1}{3}-\frac{x-1}{4}-\frac{x-1}{5}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{1}{1}+\frac{1}{2}-\frac{1}{3}-\frac{1}{4}-\frac{1}{5}\right)=0\)
Vì \(\frac{1}{1}+\frac{1}{2}-\frac{1}{3}-\frac{1}{4}-\frac{1}{5}\ne0\)
\(\Rightarrow x-1=0\)
\(\Rightarrow x=1\)
\(\frac{x-1}{1}+\frac{x-1}{2}=\frac{x-1}{3}+\frac{x-1}{4}+\frac{x-1}{5}\)
\(\Leftrightarrow\frac{x-1}{1}+\frac{x-1}{2}-\frac{x-1}{3}-\frac{x-1}{4}-\frac{x-1}{5}=0\)
\(\Leftrightarrow\left(x-1\right)\left(1+\frac{1}{2}-\frac{1}{3}-\frac{1}{4}-\frac{1}{5}\ne0\right)=0\)
\(\Leftrightarrow x=1\)
a) \(\left(x+1\right)\left(x-2\right)< 0\) khi 2 thừa số trái dấu
TH1: \(\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}\Leftrightarrow}-1< x< 2\left(chon\right)}\)
TH2: \(\hept{\begin{cases}x+1< 0\\x-2>0\end{cases}\Leftrightarrow\hept{\begin{cases}x< -1\\x>2\end{cases}\Leftrightarrow}2< x< -1\left(loai\right)}\)
Vậy \(-1< x< 2\)( tự tìm x )
b) \(\left(x-1\right)\left(x+3\right)>0\)khi 2 thừa số cùng dấu
TH1: \(\hept{\begin{cases}x-1>0\\x+3>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>1\\x>-3\end{cases}\Leftrightarrow}x>1}\)
TH2: \(\hept{\begin{cases}x-1< 0\\x+3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 1\\x< -3\end{cases}\Leftrightarrow}x< -3}\)
Vậy hoặc x > 1 hoặc x < -3 thì thỏa mãn
ĐKXĐ: \(y\ne0\)\(x+y=3\left(x-y\right)=\frac{2x}{y}\)
\(3x-3y-x-y-\frac{2x}{y}=0\)
\(2x-2y=\frac{2x}{y}\)
\(x-y=\frac{x}{y}\)
Làm nốt
ta xét 3 TH
TH1 x < -2
=> x+2 < 0 và x-2 < 0
=> | x + 2 | + | x - 2 | = -x - 2 + 2 - x = -2x = 4 => x = 2 (loại)
TH2 -2 < x < 2
=> x + 2 > 0 và x - 2 < 0
=> | x + 2 | + | x - 2 | = x + 2 + 2 -x = 4 = 4
TH2 này là TH đặc biệt nên mọi x \(\in\)Q mà -2<x<2 đều thỏa mãn (1)
TH3 x > 2
=> x + 2 > 0 và x - 2 < 0
=> | x + 2 | + | x - 2 | = x + 2 + x - 2 = 2x = 4 => x = 2 (t/m) (2)
kết hợp giữa 1 và 2 ta có với mọi x mà -2 < x < 2 \(x\in Q\)thì đều thỏa mãn