K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2017

bam may tinh

hoac tính \(\Delta\)

roi ra x=-4+can(21)

x=-4-can(21)

24 tháng 8 2017

Bai nay x thuoc rong

3 tháng 1 2023

a. 12xy2 - 8x2y = 4xy . (3y - 2x)

b. 3x + 3y - x2 - xy = (3x + 3y) - (x2 + xy) = 3 . (x + y) - x . (x + y) = (x + y)(3 - x)

3 tháng 1 2023

GIUSP MIK VS MN ƠI

 

30 tháng 6 2019

1) \(x^2-2x+5+y^2-4y=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2-4y+4\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y-2\right)^2=0\)

Vì \(\left(x-1\right)^2\ge0;\left(y-2\right)^2\ge0\)

\(\Rightarrow\left(x-1\right)^2+\left(y-2\right)^2\ge0\)

Để PT bằng 0 thì:

\(\left(x-1\right)^2=0\)và \(\left(y-2\right)^2=0\)

\(\Rightarrow x=1\)và \(y=2\)

2) \(y^2+2y+5-12x+9x^2=0\)

\(\Leftrightarrow\left(y^2+2y+1\right)+\left(9x^2-12x+4\right)=0\)

\(\Leftrightarrow\left(y+1\right)^2+\left(3x-2\right)^2=0\)

..............................................................................

..............<Giải thích như câu đầu>......................

.............................................................................

\(\left(y+1\right)^2=0\)và \(\left(3x-2\right)^2=0\)

\(\Rightarrow y=-1\)và \(x=\frac{2}{3}\)

3) \(x^2+20+9y^2+8x-12y=0\)

\(\Leftrightarrow\left(x^2+8x+16\right)+\left(9y^2-12y+4\right)=0\)

\(\Leftrightarrow\left(x+4\right)^2+\left(3y-2\right)^2=0\)

......................................................................

...............<Giải thích như câu đầu>..............

.......................................................................

\(\left(x+4\right)^2=0\)và \(\left(3y-2\right)^2=0\)

\(\Rightarrow x=-4\)và \(y=\frac{2}{3}\)

30 tháng 6 2019

1) \(x^2-2x+5+y^2-4y=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2-4y+4\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y-2\right)^2=0\)

Vì \(\left(x-1\right)^2\ge0;\left(y-2\right)^2\ge0\)

\(\Rightarrow\left(x-1\right)^2+\left(y-2\right)^2\ge0\)

Để PT bằng 0 thì:

\(\left(x-1\right)^2=0\)và \(\left(y-2\right)^2=0\)

\(\Rightarrow x=1\)và \(y=2\)

2) \(y^2+2y+5-12x+9x^2=0\)

\(\Leftrightarrow\left(y^2+2y+1\right)+\left(9x^2-12x+4\right)=0\)

\(\Leftrightarrow\left(y+1\right)^2+\left(3x-2\right)^2=0\)

..............................................................................

..............<Giải thích như câu đầu>......................

.............................................................................

\(\left(y+1\right)^2=0\)và \(\left(3x-2\right)^2=0\)

\(\Rightarrow y=-1\)và \(x=\frac{2}{3}\)

3) \(x^2+20+9y^2+8x-12y=0\)

\(\Leftrightarrow\left(x^2+8x+16\right)+\left(9y^2-12y+4\right)=0\)

\(\Leftrightarrow\left(x+4\right)^2+\left(3y-2\right)^2=0\)

......................................................................

...............<Giải thích như câu đầu>..............

.......................................................................

\(\left(x+4\right)^2=0\)và \(\left(3y-2\right)^2=0\)

\(\Rightarrow x=-4\)và \(y=\frac{2}{3}\)

5 tháng 11 2016

4a) \(\left(a+b\right)^2=a^2+2ab+b^2\)

\(\left(a-b\right)^2+4ab=a^2-2ab+b^2+4ab=a^2+b^2+2ab\)

=> (a+b)^2=(a-b)^2+4ab

9 tháng 11 2016
  • 2x – x2 + 2 – x – (3x2 + 6x + 5x +10) = – 4x2 + 2
  • 2x – x2 + 2 – x – 3x2 – 6x – 5x – 10 = – 4x2 + 2 –10x = 10 x = – 1
  • 2x2 – 6x + x – 3 = 0

(x – 3)(2x + 1) = 0

x = 3 hay x = -1/2

29 tháng 10 2021

Bài 1:

a) \(x^2-6x+15=\left(x^2-6x+9\right)+6=\left(x-3\right)^2+6\ge6\)

Dấu "=" xảy ra \(\Leftrightarrow x=3\)

b) \(3x^2-15x+4=3\left(x^2-5x+\dfrac{25}{4}\right)-\dfrac{59}{4}=3\left(x-\dfrac{5}{2}\right)^2-\dfrac{59}{4}\ge-\dfrac{59}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{5}{2}\)

Bài 2:

a) \(\Rightarrow\left(x-5\right)\left(x+5\right)+2\left(x+5\right)=0\)

\(\Rightarrow\left(x+5\right)\left(x-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-5\\x=3\end{matrix}\right.\)

c) \(\Rightarrow x^2\left(x-2\right)+7\left(x-2\right)=0\)

\(\Rightarrow\left(x-2\right)\left(x^2+7\right)=0\)

\(\Rightarrow x=2\left(do.x^2+7\ge7>0\right)\)

 

a: \(\left(x-1\right)^3+27\)

\(=\left(x-1+3\right)\left(x^2-2x+1+3x-3+3\right)\)

\(=\left(x+2\right)\left(x^2+x+1\right)\)

b: \(\left(x-2\right)^3-8\)

\(=\left(x-2-2\right)\left(x^2-4x+4+2x-4+4\right)\)

\(=\left(x-4\right)\left(x^2-2x+4\right)\)

10 tháng 1 2023

lười học thế

 

10 tháng 1 2023

suốt ngày chép mạng

 

31 tháng 10 2019

\(M=x^2+x+10\)

\(=x^2+x+\frac{1}{4}+\frac{39}{4}\)

\(=\left(x+\frac{1}{2}\right)^2+\frac{39}{4}\ge\frac{39}{4}\)

Vậy \(M_{min}=\frac{39}{4}\Leftrightarrow x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}\)

31 tháng 10 2019

\(M=x^2+2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{39}{4}\)

\(M=\left(x+\frac{1}{2}\right)^2+\frac{39}{4}\)

\(\left(x+\frac{1}{2}\right)^2+\frac{39}{4}\ge0\)

\(\left(x+\frac{1}{2}\right)^2+\frac{39}{4}\ge\frac{39}{4}\)

\(\Rightarrow M\ge\frac{39}{4}\)

Dấu "=" xảy ra: \(\left(x+\frac{1}{2}\right)^2=0\)

                            \(x+\frac{1}{2}=0\)

                            \(x=-\frac{1}{2}\)

a) Ta có: \(\left(x-3\right)=\left(3-x\right)^2\)

\(\Leftrightarrow\left(x-3\right)^2-\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)

b) Ta có: \(x^3+\dfrac{3}{2}x^2+\dfrac{3}{4}x+\dfrac{1}{8}=\dfrac{1}{64}\)

\(\Leftrightarrow x^3+3\cdot x^2\cdot\dfrac{1}{2}+3\cdot x\cdot\dfrac{1}{4}+\left(\dfrac{1}{2}\right)^3=\dfrac{1}{64}\)

\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^3=\left(\dfrac{1}{4}\right)^3\)

\(\Leftrightarrow x+\dfrac{1}{2}=\dfrac{1}{4}\)

hay \(x=-\dfrac{1}{4}\)

c) Ta có: \(8x^3-50x=0\)

\(\Leftrightarrow2x\left(4x^2-25\right)=0\)

\(\Leftrightarrow x\left(2x-5\right)\left(2x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{5}{2}\\x=-\dfrac{5}{2}\end{matrix}\right.\)

e) Ta có: \(x\left(x+3\right)-x^2-3x=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=1\end{matrix}\right.\)

f) Ta có: \(x^3+27+\left(x+3\right)\left(x-9\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2-2x\right)=0\)

\(\Leftrightarrow x\left(x-2\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-3\end{matrix}\right.\)

24 tháng 2 2019

5x -1 =4x -2 

<=> 5x -1 -4x + 2 = 0

<=> x + 1 = 0

<=> x = -1 

Vậy -1 là nghiệm của phương trình trên 

24 tháng 2 2019

* Với x=1 \(\Rightarrow\)pt có dạng; 5.1- 1 = 4.1 - 2

\(\Rightarrow\)4=2 (vô lý)

 \(\Rightarrow\)x=1 không phải là nghiệm của pt

*Với x=-1\(\Rightarrow\)pt có dạng: 5.(-1) -1 = 4.(-1) -2

\(\Rightarrow\)-6 = -6( luôn đúng)

\(\Rightarrow\)x= -1 là nghiệm của pt

nói thật là bài tập này dễ trên cả dễ. à , nhớ kết bạn với mk nha