Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+50\%\right):\frac{7}{8}=\frac{5}{7}\)
\(\Rightarrow\left(x+\frac{1}{2}\right)=\frac{5}{7}.\frac{7}{8}\)
\(\Rightarrow x+\frac{1}{2}=\frac{5}{8}\)
\(\Rightarrow x=\frac{5}{8}-\frac{1}{2}\)
\(\Rightarrow x=\frac{1}{8}\)
Vậy...
Mình làm tiếp bài của bạn " I have a crazy idea "
b) \(\frac{25-x}{3}=\frac{15}{2}\)
Áp dụng tỉ lệ thức:
\(\left(25-x\right).2=15.3\)
\(\Rightarrow25-x=\frac{15.3}{2}=\frac{45}{2}\Leftrightarrow x=25-\frac{45}{2}=\frac{5}{2}\)
c) \(x-\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-\frac{1}{20}-\frac{1}{30}-\frac{1}{42}=1\)
\(\Rightarrow x-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)=1\)
\(\Rightarrow x-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)=1\)
\(\Rightarrow x-\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{6}-\frac{1}{7}\right)=1\)
\(\Rightarrow x-\left(\frac{1}{1}-\frac{1}{7}\right)=1\Leftrightarrow x-\frac{6}{7}=1\Leftrightarrow x=1+\frac{6}{7}=\frac{13}{7}\)
ta xét VT=\(\frac{2}{42}+\frac{2}{56}+\frac{2}{72}+...+\frac{2}{x\left(x+1\right)}=2\left(\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+...+\frac{1}{x\left(x+1\right)}\right)\)
=\(2\left(\frac{7-6}{6\cdot7}+\frac{8-7}{7\cdot8}+...+\frac{\left(x+1\right)-x}{x\left(x+1\right)}\right)=2\left(\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{x}-\frac{1}{x+1}\right)\)
=\(2\left(\frac{1}{6}-\frac{1}{x+1}\right)\)= 2*1/9
=> \(\frac{1}{6}-\frac{1}{x+1}=\frac{1}{9}\)
<=> \(\frac{1}{x+1}=\frac{1}{18}\)
<=> x+1=18
=> x=17
\(\frac{x+1}{2004}+\frac{x+2}{2003}+\frac{x+3}{2002}\) + 35 = \(^{2^5}\)
\(\frac{x+1}{2004}+\frac{x+2}{2003}+\frac{x+3}{2002}\) = -3
\(\left(\frac{x+1}{2004}+1\right)+\left(\frac{x+2}{2003}+1\right)+\left(\frac{x+3}{2002}+1\right)\) = 0
\(\left(\frac{x+1}{2004}+\frac{2004}{2004}\right)+\left(\frac{x+2}{2003}+\frac{2003}{2003}\right)+\left(\frac{x+3}{2002}+\frac{2002}{2002}\right)\)= 0
\(\left(\frac{x+2005}{2004}\right)+\left(\frac{x+2005}{2003}\right)+\left(\frac{x+2005}{2002}\right)\)= 0
\(\left(x+2005\right).\left(\frac{1}{2004}+\frac{1}{2003}+\frac{1}{2002}\right)\) = 0
\(\left(x+2005\right)\) = 0 \(:\left(\frac{1}{2004}+\frac{1}{2003}+\frac{1}{2002}\right)\)
\(\left(x+2005\right)\) = 0
\(x\) = 0-2005
\(x\) = -2005
a, \(\frac{1}{6}x+\frac{1}{10}-\frac{4}{15}x+1=0\)
\(\Leftrightarrow-\frac{1}{10}x=-\frac{11}{10}\)
\(\Leftrightarrow x=11\)
b,\(\left(\frac{1}{7}x-\frac{2}{7}\right)\left(-\frac{1}{5}x+\frac{3}{5}\right)\left(\frac{1}{3}x+\frac{4}{3}\right)=0\)
\(\Leftrightarrow\frac{1}{7}x-\frac{2}{7}=0\)hoặc \(-\frac{1}{5}x+\frac{3}{5}=0\)hoặc \(\frac{1}{3}x+\frac{4}{3}=0\)
+) \(\frac{1}{7}x-\frac{2}{7}=0\Leftrightarrow\frac{1}{7}x=\frac{2}{7}\Leftrightarrow x=2\)
+)\(-\frac{1}{5}x+\frac{3}{5}=0\Leftrightarrow-\frac{1}{5}x=-\frac{3}{5}\Leftrightarrow x=3\)
+)\(\frac{1}{3}x+\frac{4}{3}=0\Leftrightarrow\frac{1}{3}x=-\frac{4}{3}\Leftrightarrow x=-4\)
c, \(\frac{1}{2}x-\frac{11}{15}:\frac{33}{35}=-\frac{1}{3}\)
\(\Leftrightarrow\frac{1}{2}x-\frac{7}{9}=-\frac{1}{3}\)
\(\Leftrightarrow\frac{1}{2}x=\frac{4}{9}\)
\(\Leftrightarrow x=\frac{8}{9}\)
a/ \(\frac{1}{6}x+\frac{1}{10}-\frac{4}{15}x+1=0\)
\(\Rightarrow-\frac{1}{10}x=-\frac{11}{10}\)
\(\Rightarrow x=11\)
b/ \(\left(\frac{1}{7}x-\frac{2}{7}\right)\left(-\frac{1}{5}x+\frac{3}{5}\right)\left(\frac{1}{3}x+\frac{4}{3}\right)=0\)
\(\Rightarrow\frac{1}{7}x-\frac{2}{7}=0\Rightarrow\frac{1}{7}x=\frac{2}{7}\Rightarrow x=2\)
hoặc \(-\frac{1}{5}x+\frac{3}{5}=0\Rightarrow-\frac{1}{5}x=-\frac{3}{5}\Rightarrow x=3\)
hoặc \(\frac{1}{3}x+\frac{4}{3}=0\Rightarrow\frac{1}{3}x=-\frac{4}{3}\Rightarrow x=-4\)
Vậy x = 2, x = 3, x = -4
c/ \(\frac{1}{2}x-\frac{11}{15}:\frac{33}{35}=-\frac{1}{3}\)
\(\Rightarrow\frac{1}{2}x-\frac{7}{9}=-\frac{1}{3}\)
\(\Rightarrow\frac{1}{2}x=\frac{4}{9}\Rightarrow x=\frac{8}{9}\)
Vậy x = 8/9
a) \(x-\frac{5}{7}=\frac{1}{9}\Rightarrow x=\frac{1}{9}+\frac{5}{7}\Rightarrow x=\frac{52}{63}\)
b) \(\frac{-3}{7}-x=\frac{4}{5}+\frac{-2}{3}\Rightarrow\frac{-3}{7}-x=\frac{2}{15}\Rightarrow x=\frac{-3}{7}-\frac{2}{15}\Rightarrow x=\frac{-59}{105}\)
c) \(x-\frac{1}{5}=\frac{2}{7}.\frac{-11}{5}\Rightarrow x-\frac{1}{5}=\frac{-22}{35}\Rightarrow x=\frac{-22}{35}+\frac{1}{5}\Rightarrow x=\frac{-3}{7}\)
d) \(\frac{x}{182}=\frac{-6}{14}.\frac{35}{91}\Rightarrow\frac{x}{182}=\frac{-15}{91}\Rightarrow x=\frac{\left(-15\right).182}{91}\Rightarrow x=-30\)
Ta có: \(\frac{x}{35}-\frac{x}{42}=\frac{1}{2}\)
⇔\(\frac{x}{35}-\frac{x}{42}-\frac{1}{2}=0\)
⇔\(\frac{6x}{210}-\frac{5x}{210}-\frac{105}{210}=0\)
\(\Leftrightarrow x-105=0\)
\(\Leftrightarrow x=105\)
Vậy: x=105