\(\frac{2+3x}{3}-\left|x+1\right|=\frac{4-x}{2}-2\left(1+2x\right)\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2016

1) \(x=\frac{99}{196}\)

2) \(x=-2\)

3) \(x\approx-0,59\)

giup mk giải rõ dc ko

13 tháng 7 2016

\(\frac{\left(2-3x\right)^2}{3}-\frac{\left(1+2x\right)^2}{2}=\frac{3}{4}-2\left(x-1\right)\left(x+2\right)+x\left(1+x\right)\)

\(\frac{2^2-12x-3x^2}{3}-\frac{1^2+4x+2x^2}{2}=\frac{3}{4}-\left(x^2+x-2\right)+3x\)

\(\frac{2.\left(4-12x-3x^2\right)}{6}-\frac{3.\left(1+4x+2x^2\right)}{6}=\frac{11}{4}-x^2+2x\)

\(\frac{8-24x-6x^2}{6}-\frac{3+12x+2x^2}{6}=\frac{11}{4}-x^2+2x\)

\(\frac{8-24x-6x^2-3-12x-2x^2}{6}=\frac{11}{4}-x^2+2x\)

\(\frac{5-36x-8x^2}{6}=\frac{11}{4}-x^2+2x\)

Chỗ đây thì mk chịu

 

 

 

15 tháng 6 2016

máy tính tính dc vô nghiệm

15 tháng 6 2016

Giải ra mk vs

\(\Leftrightarrow\dfrac{1}{3}\left(4x^2-4x+1\right)-\dfrac{1}{2}\left(9x^2+6x+1\right)=\dfrac{1}{3}\left(2x-3x^2-2+3x\right)\)

\(\Leftrightarrow\dfrac{4}{3}x^2-\dfrac{4}{3}x+\dfrac{4}{3}-\dfrac{9}{2}x^2-3x-\dfrac{1}{2}=\dfrac{1}{3}\left(-3x^2+5x-2\right)\)

\(\Leftrightarrow x^2\cdot\dfrac{-19}{6}-\dfrac{13}{3}x+\dfrac{5}{6}+x^2-\dfrac{5}{3}x+\dfrac{2}{3}=0\)

\(\Leftrightarrow x^2\cdot\dfrac{-13}{6}-6x+\dfrac{3}{2}=0\)

\(\text{Δ}=\left(-6\right)^2-4\cdot\left(-\dfrac{13}{6}\right)\cdot\dfrac{3}{2}=49\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{6-7}{2\cdot\dfrac{-13}{6}}=\dfrac{3}{13}\\x_2=\dfrac{6+7}{2\cdot\dfrac{-13}{6}}=-3\end{matrix}\right.\)

21 tháng 5 2016
  1. Ta chứng minh bất đẳng thức phụ dưới đây: \(\frac{1}{\sqrt{x}\left(x+1\right)}=\frac{\sqrt{x}}{x\left(x+1\right)}=\sqrt{x}\left(\frac{1}{x}-\frac{1}{x+1}\right)=\sqrt{x}\left(\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{x+1}}\right)\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{x+1}}\right)\)\(=\left(1+\frac{\sqrt{x}}{\sqrt{x+1}}\right)\left(\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{x+1}}\right)< 2\left(\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{x+1}}\right)\)

Áp dụng  : \(\frac{1}{\sqrt{1}.2}< 2.\left(1-\frac{1}{\sqrt{2}}\right)\)

\(\frac{1}{\sqrt{2}.3}< 2.\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)\)

...................................

\(\frac{1}{\sqrt{2015}.2016}< 2.\left(\frac{1}{\sqrt{2015}}-\frac{1}{\sqrt{2016}}\right)\)

Cộng các BĐT trên với nhau được : \(\frac{1}{2}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{2016\sqrt{2015}}< 2\left(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2015}}-\frac{1}{\sqrt{2016}}\right)=2\left(1-\frac{1}{\sqrt{2016}}\right)< 2\left(1-\frac{1}{\sqrt{2025}}\right)=\frac{88}{45}\)

Từ đó suy ra đpcm

Cái ............... là gì vậy bn

\(\Leftrightarrow\dfrac{1}{2}\left(x^2-4x+4\right)-\dfrac{13}{3}\left(x^2+6x+9\right)=\dfrac{1}{4}\left(x^2-3x+2\right)-2\left(9x^2+3x-2\right)\)

\(\Leftrightarrow x^2\cdot\dfrac{1}{2}-2x+2-\dfrac{13}{3}x^2-26x-39=\dfrac{1}{4}x^2-\dfrac{3}{4}x+\dfrac{1}{2}-18x^2-6x+4\)

\(\Leftrightarrow x^2\cdot\dfrac{167}{12}-\dfrac{85}{4}x-\dfrac{83}{2}=0\)

\(\Leftrightarrow167x^2-255x-498=0\)

\(\text{Δ}=\left(-255\right)^2-4\cdot167\cdot\left(-498\right)=397689\)

Vì Δ>0 nên phương trình có 2 nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{255-\sqrt{397689}}{334}\\x_2=\dfrac{255+\sqrt{397689}}{334}\end{matrix}\right.\)

3 tháng 8 2019

a,\(\left(x-\frac{2}{3}\right),\left(x+\frac{1}{1}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{2}{3}\\x+\frac{1}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{2}{3}\\x=\frac{-1}{4}\end{matrix}\right.\)

b,\(\left(x-\frac{2}{3}\right)\left(2x-\frac{3}{4}\right)=\left(3x+\frac{1}{2}\right)\left(x+\frac{2}{3}\right)\)

\(\Leftrightarrow2x^2-\frac{3}{4}x-\frac{4}{3}x+\frac{1}{2}=3x^2+2x+\frac{1}{2}x+\frac{1}{3}\)

\(\Leftrightarrow2x^2-\frac{25}{12}x+\frac{1}{2}=3x^2+\frac{5}{2}x+\frac{1}{3}\)

\(\Leftrightarrow24x^2-25x+6=36x^2+30x+4\)

\(\Leftrightarrow24x^2-25x+6-36x^2-30x-4=0\)

\(\Leftrightarrow-12x^2-55x+2=0\)

\(\Leftrightarrow12x^2+55x-2=0\)

\(\Leftrightarrow x=\frac{-55\pm\sqrt{55^2-4.12\left(-2\right)}}{2.12}\)

\(\Leftrightarrow\frac{-55\pm\sqrt{3025+96}}{24}\)

\(\Leftrightarrow\frac{-55\pm\sqrt{3121}}{24}\)

\(\Leftrightarrow\frac{-55+\sqrt{3121}}{24}\)

\(\Leftrightarrow\left[{}\begin{matrix}\frac{-55+\sqrt{3121}}{24}\\\frac{-55-\sqrt{3121}}{24}\end{matrix}\right.\)

27 tháng 7 2016

Hỏi đáp Toán