Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
a) \(\dfrac{1}{3}x+\dfrac{1}{5}-\dfrac{1}{2}x=1\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{1}{5}-\dfrac{1}{6}x=\dfrac{5}{4}\)
\(\Leftrightarrow\dfrac{1}{6}x=\dfrac{-21}{20}\)
\(\Leftrightarrow x=\dfrac{-63}{10}\)
Vậy ...
b) \(\dfrac{3}{2}\left(x+\dfrac{1}{2}\right)-\dfrac{1}{8}x=\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{3}{2}x+\dfrac{3}{4}-\dfrac{1}{8}x=\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{11}{8}x=\dfrac{-1}{2}\)
\(\Leftrightarrow x=\dfrac{-4}{11}\)
Vậy ...
Các câu sau làm tương tự câu b)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x-1}{2018}=\dfrac{3-y}{2019}=\dfrac{x-1+3-y}{2018+2019}=1\)
=>x-1=2018 và 3-y=2019
=>x=2019; y=-2016
\(\Leftrightarrow\left(\dfrac{x+4}{2015}+1\right)+\left(\dfrac{x+3}{2016}+1\right)=\left(\dfrac{x+2}{2017}+1\right)+\left(\dfrac{x+1}{2018}+1\right)\)
=>x+2019=0
=>x=-2019
\(\dfrac{2017}{1}+\dfrac{2016}{2}+...+\dfrac{2}{2016}+\dfrac{1}{2017}\)
\(=\left(\dfrac{2016}{2}+1\right)+\left(\dfrac{2015}{3}+1\right)+...+\left(\dfrac{2}{2016}+1\right)+\left(\dfrac{1}{2017}+1\right)+1\)
\(=\dfrac{2018}{2}+\dfrac{2018}{3}+...+\dfrac{2018}{2017}+\dfrac{2018}{2018}\)
\(=2018\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2018}\right)\)
Theo đề, ta có: \(x=\dfrac{2018\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2018}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2018}}=2018\)
a. \(\dfrac{-39}{7}:x=26\)
x = \(\dfrac{-39}{7}:26\)
x = \(\dfrac{-3}{14}\)
b. \(x:\dfrac{13}{5}=\dfrac{7}{4}\)
x = \(\dfrac{7}{4}.\dfrac{13}{5}\)
x = \(\dfrac{91}{20}\)
c. x = \(\dfrac{-3}{5}-\dfrac{1}{2}\)
x = \(\dfrac{-11}{10}\)
d. \(x-\dfrac{3}{4}=\dfrac{9}{4}\)
x = \(\dfrac{9}{4}+\dfrac{3}{4}\)
x = 3
e. \(\dfrac{7}{8}:x=\dfrac{14}{3}\)
x = \(\dfrac{7}{8}:\dfrac{14}{3}\)
x = \(\dfrac{3}{16}\)
f. \(x:\dfrac{8}{3}=\dfrac{13}{3}\)
x = \(\dfrac{13}{3}.\dfrac{8}{3}\)
x = \(\dfrac{104}{9}\)
g. x = \(\dfrac{4}{10}-\dfrac{2}{5}\)
x = 0
chúc bạn học tốt
Bài 1:
a, \(\dfrac{x+5}{x}=\dfrac{4}{3}\)
\(\Rightarrow3x+15=4x\\ \Rightarrow4x-3x=15\\ \Rightarrow x=15\)
b, \(\dfrac{x-20}{x-10}=\dfrac{x+40}{x+70}\)
\(\Rightarrow\left(x-20\right).\left(x+70\right)=\left(x+40\right)\left(x-10\right)\)
\(\Rightarrow x^2+70x-20x-1400=x^2-10x+40x-400\)
\(\Rightarrow x^2-x^2+70x-20x+10x-40x=-400+1400\)
\(\Rightarrow20x=1000\Rightarrow x=50\)
c, \(4^x=\dfrac{1.2.3.....31}{4.6.8.....64}\)
\(\Rightarrow4^x=\dfrac{1}{2.2.2.2.....2.2.64}\) (có 30 số 2)
\(\Rightarrow4^x=\dfrac{1}{2^{30}.4^3}\Rightarrow4^x=\dfrac{1}{4^{15}.4^3}\)
\(\Rightarrow4^x=\dfrac{1}{4^{18}}\)
\(\Rightarrow4^x=4^{-18}\)
Vì \(4\ne-1;4\ne0;4\ne1\) nên \(x=-18\)
Chúc bạn học tốt!!!
a , \(\dfrac{x+5}{x}=\dfrac{4}{3}\Leftrightarrow3\left(x+5\right)=4x\)
<=> 3x+15=4x
<=> x= 15
b , \(\dfrac{x-20}{x-10}=\dfrac{x+40}{x+70}\)
<=> \(\dfrac{x-10}{x-10}-\dfrac{10}{x-10}=\dfrac{x+70}{x+70}-\dfrac{30}{x+70}\)
<=> \(1-\dfrac{10}{x-10}=1-\dfrac{30}{x+70}\)
<=> \(\dfrac{10}{x-10}=\dfrac{30}{x+70}\Leftrightarrow\dfrac{1}{x-10}=\dfrac{3}{x+70}\)
<=> (x+70)=3(x-10)
<=> x+70 = 3x-30
<=> 100=2x
<=> x= 50
a: =>||12x-1/2|-2|=-2/3x3/4=-6/12=-1/2(loại)
b: =>2/3-1/3x-1/2+2/3x=2x+2/3
=>-5/3x=1/2
=>x=-1/2:5/3=-1/2x3/5=-3/10
c: =>|3/2x+1/4|=2+3/4=11/4
=>3/2x+1/4=11/4 hoặc 3/2x+1/4=-11/4
=>3/2x=5/2 hoặc 3/2x=-3
=>x=3/5 hoặc x=-3:3/2=-2
2, \(\Rightarrow\left\{{}\begin{matrix}\\\dfrac{5}{4}x-\dfrac{7}{2}=0\\\dfrac{5}{8}x+\dfrac{3}{5}=0\\\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{14}{5}\\\\x=\dfrac{-24}{25}\\\end{matrix}\right.\)
Bài 1:
a: \(\Leftrightarrow2-3\sqrt{x}+5\sqrt{x}=8\)
=>2 căn x=6
=>căn x=3
=>x=9
b: \(\Leftrightarrow\dfrac{1}{\sqrt{x}}\cdot\left(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{6}\right)=\dfrac{2}{3}\)
\(\Leftrightarrow\dfrac{1}{\sqrt{x}}=\dfrac{2}{3}:\dfrac{2}{3}=1\)
=>x=1
a: =>1/6x=-49/60
=>x=-49/60:1/6=-49/60*6=-49/10
b: =>3/2x-1/5=3/2 hoặc 3/2x-1/5=-3/2
=>x=17/15 hoặc x=-13/15
c: =>1,25-4/5x=-5
=>4/5x=1,25+5=6,25
=>x=125/16
d: =>2^x*17=544
=>2^x=32
=>x=5
i: =>1/3x-4=4/5 hoặc 1/3x-4=-4/5
=>1/3x=4,8 hoặc 1/3x=-0,8+4=3,2
=>x=14,4 hoặc x=9,6
j: =>(2x-1)(2x+1)=0
=>x=1/2 hoặc x=-1/2
`[x+4]/2018+[x+3]/2019=[x+2]/2020+[x+1]/2021`
`=>[x+4]/2018+1+[x+3]/2019+1=[x+2]/2020+1+[x+1]/2021+1`
`=>[x+2022]/2018+[x+2022]/2019-[x+2022]/2020-[x+2022]/2020=0`
`=>(x+2022)(1/2018+1/2019-1/2020-1/2022)=0`
Mà `1/2018+1/2019-1/2020-1/2022`\(\ne 0\)
`=>x+2022=0`
`=>x=-2022`