K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2018

Không có điều kiện \(x\in Z\)không có thì bài này phải giải theo phương pháp GTLN-GTNN rồi tìm khoảng giá trị của y

AH
Akai Haruma
Giáo viên
2 tháng 5 2018

Lời giải:

Để \(\frac{4x+3}{x^2+1}\in\mathbb{Z}\)

\(\Leftrightarrow 4x+3\vdots x^2+1(1)\)

\(\Rightarrow x(4x+3)\vdots x^2+1\)

hay \( 4x^2+3x\vdots x^2+1\)

\(\Leftrightarrow 4(x^2+1)+3x-4\vdots x^2+1\)

\(\Leftrightarrow 3x-4\vdots x^2+1\)

\(\Rightarrow 12x-16\vdots x^2+1(*)\)

Từ \((1)\Rightarrow 12x+9\vdots x^2+1(**)\)

\((**)-(*)\Rightarrow 25\vdots x^2+1\Rightarrow x^2+1\in \text{Ư}(25)\)

Mà \(x^2+1\geq 1, \forall x\in\mathbb{Z}\Rightarrow x^2+1\in\left\{1;5;25\right\}\)

\(\Rightarrow x^2\in\left\{0;4;24\right\}\)

Vì \(x\in\mathbb{Z}\Rightarrow x\in\left\{0;\pm 2\right\}\)

Vậy.........

3 tháng 1 2022

x=1 nha còn cách làm thì ko bt .-.
\(\dfrac{\left(x+1\right)\left(x-3\right)}{4x}\)=\(\dfrac{x^2-2x-3}{4x}\)=\(\dfrac{x^2-2x+1-3}{4x}=\dfrac{\left(x-1\right)^2}{4x}-\dfrac{4}{4x}\)=\(\dfrac{\left(x-1\right)^2}{4x}-\dfrac{1}{x}\)
giờ thì thay x=1 vào thì ta đc:
\(\dfrac{\left(1-1\right)^2}{4.1}-\dfrac{1}{1}\)=0-1=-1 

a) Ta có: \(A=\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}+\dfrac{3-11x}{9-x^2}\)

\(=\dfrac{2x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\dfrac{\left(x+1\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{11x-3}{\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{2x^2-6x+x^2+4x+3+11x-3}{\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{3x^2+9x}{\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{3x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{3x}{x-3}\)

b)

ĐKXĐ: \(x\notin\left\{3;-3;-1\right\}\)

Ta có: P=AB

\(=\dfrac{3x}{x-3}\cdot\dfrac{x-3}{x+1}\)

\(=\dfrac{3x}{x+1}\)

Để \(P=\dfrac{9}{2}\) thì \(\dfrac{3x}{x+1}=\dfrac{9}{2}\)

\(\Leftrightarrow9\left(x+1\right)=6x\)

\(\Leftrightarrow9x-6x=-9\)

\(\Leftrightarrow3x=-9\)

hay x=-3(loại)

Vậy: Không có giá trị nào của x để \(P=\dfrac{9}{2}\)

a:

ĐKXĐ: x<>-1/2

Để \(\dfrac{2x^3+x^2+2x+2}{2x+1}\in Z\) thì

\(2x^3+x^2+2x+1+1⋮2x+1\)

=>\(2x+1\inƯ\left(1\right)\)

=>2x+1 thuộc {1;-1}

=>x thuộc {0;-1}

b:

ĐKXĐ: x<>1/3

 \(\dfrac{3x^3-7x^2+11x-1}{3x-1}\in Z\)

=>3x^3-x^2-6x^2+2x+9x-3+2 chia hết cho 3x-1

=>2 chia hết cho 3x-1

=>3x-1 thuộc {1;-1;2;-2}

=>x thuộc {2/3;0;1;-1/3}

mà x nguyên

nên x thuộc {0;1}

c: 

ĐKXĐ: x<>2

\(\dfrac{x^4-16}{x^4-4x^3+8x^2-16x+16}\in Z\)

=>\(\left(x^2-4\right)\left(x^2+4\right)⋮\left(x-2\right)^2\left(x^2+4\right)\)

=>\(x+2⋮x-2\)

=>x-2+4 chia hết cho x-2

=>4 chia hết cho x-2

=>x-2 thuộc {1;-1;2;-2;4;-4}

=>x thuộc {3;1;4;0;6;-2}

 

16 tháng 11 2021

a: Để D là số nguyên thì \(x-3\in\left\{1;-1;5;-5\right\}\)

hay \(x\in\left\{4;2;8;-2\right\}\)

25 tháng 2 2022

a, \(A=\dfrac{4x^2+2x^2+5x+3-9}{9x^2-4}=\dfrac{6x^2+5x-6}{9x^2-4}=\dfrac{\left(3x-2\right)\left(2x+3\right)}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{2x+3}{3x+2}\)

b, Ta có \(6x+9⋮3x+2\Leftrightarrow2\left(3x+2\right)+5⋮3x+2\Rightarrow3x+2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

3x+21-15-5
xloại-11loại

 

a: \(A=\dfrac{x^2-5x+6-x^2+x+2x^2-6}{x\left(x-3\right)}=\dfrac{2x^2-4x}{x\left(x-3\right)}=\dfrac{2x}{x-3}\)

Để P là số nguyên dương thì x^2-4x>=0 và x^2-4x chia hết cho x^2+2

=>x^2+2-4x-2 chia hết cho x^2+2 và (x>=4 hoặc x<=0)

=>-4x-2 chia hết cho x^2+2 và (x>=4 hoặc x<=0)

=>4x+2 chia hết cho x^2+2 và (x>=4 hoặc x<=0)

=>16x^2-4 chia hết cho x^2+2 và (x>=4 hoặc x<=0)

=>16x^2+32-36 chia hết cho x^2+2 và (x>=4 hoặc x<=0)

=>\(x^2+2\in\left\{2;3;4;6;9;12;18;36\right\}\)  và (x>=4 hoặc x<=0)

=>\(x\in\left\{0;4;\sqrt{34};-\sqrt{34};-1;-\sqrt{2};-2;-\sqrt{7};-\sqrt{10};-4\right\}\)

NV
26 tháng 3 2023

Khi đề yêu cầu P nguyên mà ko có điều kiện x nguyên thì phương pháp tốt nhất luôn là tìm miền giá trị của P từ đó lọc ra những số nguyên rồi tìm ngược lại x

\(P=\dfrac{x^2-4x}{x^2+2}=\dfrac{-\left(x^2+2\right)+2x^2-4x+2}{x^2+2}=-1+\dfrac{2\left(x-1\right)^2}{x^2+2}\ge-1\)

\(P=\dfrac{2\left(x^2+2\right)-x^2-4x-4}{x^2+2}=2-\dfrac{\left(x+2\right)^2}{x^2+2}\le2\)

\(\Rightarrow-1\le P\le2\)

Mà \(P\) nguyên dương \(\Rightarrow P=\left\{1;2\right\}\)

-  Với \(P=1\Rightarrow\dfrac{x^2-4x}{x^2+2}=1\Rightarrow-4x=2\Rightarrow x=-\dfrac{1}{2}\)

- Với \(P=2\Rightarrow\dfrac{x^2-4x}{x^2+2}=2\Rightarrow x^2+4x+4=0\Rightarrow x=-2\)

Vậy \(x=\left\{-2;-\dfrac{1}{2}\right\}\)

c) Ta có: \(P=x^3+y^3+6xy\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)+6xy\)

\(=\left(x+y\right)^3-3xy\left(x+y-2\right)\)

\(=2^3=8\)