K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2015

-x2+4x+2=6

-x2+4x+2-6=0

-x2+4x-4=0

-x2+2x+2x-4=0

-x.(x-2)+2(x-2)=0

(x-2)(-x+2)=0

-(x-2)(x-2)=0

-(x-2)2=0

=>x-2=0

=>x=2

TXĐ: \(\left\{{}\begin{matrix}x\in R\\x\notin\left\{0;2;-2\right\}\end{matrix}\right.\)

Ta có: \(\left(\dfrac{x^2}{x^3-4x}+\dfrac{6}{6-3x}+\dfrac{1}{x+2}\right):\left(x-2+\dfrac{10-x^2}{x+2}\right)\)

\(=\left(\dfrac{x^2}{x\left(x-2\right)\left(x+2\right)}-\dfrac{6\left(x+2\right)}{3\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{\left(x+2\right)\left(x-2\right)}\right):\left(\dfrac{\left(x-2\right)\left(x+2\right)+10-x^2}{x+2}\right)\)

\(=\dfrac{x-2\left(x+2\right)+x-2}{\left(x-2\right)\left(x+2\right)}:\dfrac{x^2-4+10-x^2}{x+2}\)

\(=\dfrac{x-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x+2}{6}\)

\(=\dfrac{-6}{x-2}\cdot\dfrac{1}{6}\)

\(=\dfrac{-1}{x-2}\)

Đề có sai không bạn?

8 tháng 11 2019

x^2+2x+2 x^4+x^3+ax^2+4x+6 x^2-x+a x^4+2x^3+2x^2 -x^3+(a-2)x^2+4x+6 -x^3-2x^2-2x ax^2+6x+6 ax^2+2ax+2a (6-2a)x+(6-2a)

Để đa thức \(x^4+x^3+ax^2+4a+6\) chia hết cho \(x^2+2x+2\)thì:

\(\left(6-2a\right)x+\left(6-2a\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}6-2a=0\\6-2a=0\end{cases}}\Leftrightarrow a=3\)

Vậy a = 3 thì đa thức \(x^4+x^3+ax^2+4a+6\) chia hết cho \(x^2+2x+2\)

a: \(M=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{6}{3\left(x-2\right)}+\dfrac{1}{x+2}\right):\left(x-2+\dfrac{10-x^2}{x+2}\right)\)

\(=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{2}{x-2}+\dfrac{1}{x+2}\right):\dfrac{x^2-4+10-x^2}{x+2}\)

\(=\dfrac{x-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x+2}{6}\)

\(=\dfrac{-1}{x-2}\)

b: Để M đạt giá trị lớn nhất thì x-2=-1

hay x=1

c: Để M=3x thì \(\dfrac{-1}{x-2}=3x\)

\(\Leftrightarrow3x^2-6x+1=0\)

\(\text{Δ}=\left(-6\right)^2-4\cdot3\cdot1=36-12=24\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{6-2\sqrt{6}}{6}=\dfrac{3-\sqrt{6}}{3}\\x_2=\dfrac{3+\sqrt{6}}{3}\end{matrix}\right.\)