\(\frac{3-4x}{x^2+1}\) < 0

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\Leftrightarrow\left(3-4x\right)\left(x^2+1\right)< 0\)

Vì x2+1>0

=> 3-4x<0

\(\Rightarrow x>\frac{3}{4}\)

26 tháng 4 2018

BÀI 1:

 a)   \(ĐKXĐ:\) \(\hept{\begin{cases}x-2\ne0\\x+2\ne0\end{cases}}\) \(\Leftrightarrow\)\(\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}\)

b)  \(A=\left(\frac{2}{x-2}-\frac{2}{x+2}\right).\frac{x^2+4x+4}{8}\)

\(=\left(\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\right).\frac{\left(x+2\right)^2}{8}\)

\(=\frac{2x+4-2x+4}{\left(x-2\right)\left(x+2\right)}.\frac{\left(x+2\right)^2}{8}\)

\(=\frac{x+2}{x-2}\)

c)  \(A=0\)  \(\Rightarrow\)\(\frac{x+2}{x-2}=0\)

                      \(\Leftrightarrow\) \(x+2=0\)

                      \(\Leftrightarrow\)\(x=-2\) (loại vì ko thỏa mãn ĐKXĐ)

Vậy ko tìm đc  x   để  A = 0

p/s:  bn đăng từng bài ra đc ko, mk lm cho

26 tháng 4 2018

giải nhanh giúp mik nha mn:)

3 tháng 4 2021

a, \(B=\left(\frac{9-3x}{x^2+4x-5}-\frac{x+5}{1-x}-\frac{x+1}{x+5}\right):\frac{7x-14}{x^2-1}\)

\(=\left(\frac{9-3x}{\left(x-1\right)\left(x+5\right)}+\frac{\left(x+5\right)^2}{\left(x-1\right)\left(x+5\right)}-\frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+5\right)}\right):\frac{7\left(x-2\right)}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{9-3x+x^2+10x+25-x^2+1}{\left(x-1\right)\left(x+5\right)}.\frac{\left(x-1\right)\left(x+1\right)}{7\left(x-2\right)}\)

\(=\frac{35+7x}{x+5}\frac{x+1}{7\left(x-2\right)}=\frac{7\left(x+5\right)\left(x+1\right)}{7\left(x+5\right)\left(x-2\right)}=\frac{x+1}{x-2}\)

b, Ta có : \(\left(x+5\right)^2-9x-45=0\)

\(\Leftrightarrow x^2+10x+25-9x-45=0\Leftrightarrow x^2+x-20=0\)

\(\Leftrightarrow\left(x-4\right)\left(x-5\right)=0\Leftrightarrow\orbr{\begin{cases}x=4\\x=5\end{cases}}\)

TH1 : Thay x = 4 vào biểu thức ta được : \(\frac{4+1}{4-2}=\frac{5}{2}\)

TH2 : THay x = 5 vào biểu thức ta được : \(\frac{5+1}{5-2}=\frac{6}{3}=2\)

c, Để B nhận giá trị nguyên khi \(\frac{x+1}{x-2}\inℤ\Rightarrow x-2+3⋮x-2\)

\(\Leftrightarrow3⋮x-2\Rightarrow x-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

x - 21-13-3
x315-1
3 tháng 4 2021

d, Ta có : \(B=-\frac{3}{4}\Rightarrow\frac{x+1}{x-2}=-\frac{3}{4}\)ĐK : \(x\ne2\)

\(\Rightarrow4x+4=-3x+6\Leftrightarrow7x=2\Leftrightarrow x=\frac{2}{7}\)( tmđk )

e, Ta có B < 0 hay \(\frac{x+1}{x-2}< 0\)

TH1 : \(\hept{\begin{cases}x+1< 0\\x-2>0\end{cases}\Rightarrow\hept{\begin{cases}x< -1\\x>2\end{cases}}}\)( ktm )

TH2 : \(\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}}\Rightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}\Rightarrow-1< x< 2}\)

13 tháng 6 2016

\(A=\left(\frac{x+2}{3x}+\frac{2}{x+1}-3\right):\frac{2-4x}{x+1}-\frac{3x+1-x^2}{3x}\)

\(\left(DK:x\ne0;x\ne-1;x\ne\frac{1}{2}\right)\)

\(=\frac{\left(x+2\right)\left(x+1\right)+6x-9x\left(x+1\right)}{3x\left(x+1\right)}.\frac{x+1}{2\left(1-2x\right)}+\frac{x^2-3x-1}{3x}\)

\(=\frac{x^2+3x+2+6x-9x^2-9x}{3x}.\frac{1}{2\left(1-2x\right)}+\frac{x^2-3x-1}{3x}\)

\(=\frac{-8x^2+2}{6x}.\frac{1}{1-2x}+\frac{x^2-3x-1}{3x}=\frac{-2\left(4x^2-1\right)}{6x}.\frac{1}{1-2x}+\)\(\frac{x^2-3x-1}{3x}\)

\(\frac{\left(1-2x\right)\left(1+2x\right)}{3x\left(1-2x\right)}+\frac{x^2-3x-1}{3x}=\frac{x^2-3x-1+1+2x}{3x}=\)\(=\frac{x\left(x-1\right)}{3x}=\frac{x-1}{3}\)

13 tháng 6 2016

a)\(A=\left(\frac{x+2}{3x}+\frac{2}{x+1}-3\right):\frac{2-4x}{x+1}-\frac{3x+1-x^2}{3x}\left(DK:x\ne0;x\ne-1;x\ne\frac{1}{2}\right)\)

\(=\frac{\left(x+2\right)\left(x+1\right)+6x-9x\left(x+1\right)}{3x\left(x+1\right)}.\frac{x+1}{2\left(1-2x\right)}+\frac{x^2-3x-1}{3x}\)

\(=\frac{x^2+3x+2+6x-9x^2-9x}{3x}.\frac{1}{2\left(1-2x\right)}+\frac{x^2-3x-1}{3x}\)

\(=\frac{-8x^2+2}{6x}.\frac{1}{1-2x}+\frac{x^2-3x-1}{3x}=\frac{-2\left(4x^2-1\right)}{6x}.\frac{1}{1-2x}+\frac{x^2-3x-1}{3x}\)

\(\frac{\left(1-2x\right)\left(1+2x\right)}{3x\left(1-2x\right)}+\frac{x^2-3x-1}{3x}=\frac{x^2-3x-1+1+2x}{3x}=\frac{x\left(x-1\right)}{3x}=\frac{x-1}{3}\)

b) \(\left|x\right|=\frac{1}{3}\Rightarrow\orbr{\begin{cases}x=\frac{1}{3}\left(x\ge0\right)\\x=-\frac{1}{3}\left(x< 0\right)\end{cases}}\)

Thay vào \(\frac{x-1}{3}\)tính được A.

c) \(A< 0\Rightarrow\frac{x-1}{3}< 0\Rightarrow x-1< 0\Rightarrow x< 1\)

Kết hợp cùng với điều kiện của ở phần rút gọn.

d) \(A\in Z\Rightarrow\frac{x-1}{3}\in Z\Rightarrow x=3k+1\)(\(k\in Z\))

21 tháng 6 2021

a, sửa đề : \(C=\frac{x+2}{x+3}-\frac{5}{\left(x+3\right)\left(x-2\right)}+\frac{1}{2-x}\)ĐK : \(x\ne-3;2\)

\(=\frac{\left(x+2\right)\left(x-2\right)-5-x-3}{\left(x+3\right)\left(x-2\right)}=\frac{x^2-12-x}{\left(x+3\right)\left(x-2\right)}=\frac{\left(x+3\right)\left(x-4\right)}{\left(x+3\right)\left(x-2\right)}=\frac{x-4}{x-2}\)

b, Ta có : \(x^2-x=2\Leftrightarrow x^2-x-2=0\Leftrightarrow\left(x+1\right)\left(x-2\right)=0\Leftrightarrow x=-1;x=2\)

Kết hợp với giả thiết vậy x = -1 

Thay x = -1 vào biểu thức C ta được : \(\frac{-1-4}{-1-2}=-\frac{5}{-3}=\frac{5}{3}\)

c, Ta có : \(C=\frac{1}{2}\Rightarrow\frac{x-4}{x-2}=\frac{1}{2}\Rightarrow2x-8=x-2\Leftrightarrow x=6\)( tm )

d, \(C>1\Rightarrow\frac{x-4}{x-2}>1\Rightarrow\frac{x-4}{x-2}-1>0\Leftrightarrow\frac{x-4-x+2}{x-2}>0\Leftrightarrow\frac{-2}{x-2}>0\)

\(\Rightarrow x-2< 0\Leftrightarrow x< 2\)vì -2 < 0 

21 tháng 6 2021

e, tự làm nhéee 

f, \(C< 0\Rightarrow\frac{x+4}{x+2}< 0\)

mà x + 4 > x + 2 

\(\hept{\begin{cases}x+4>0\\x+2< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>-4\\x< -2\end{cases}\Leftrightarrow-4< x< -2}}\)

Vì \(x\inℤ\Rightarrow x=-3\)( ktmđk )

Vậy ko có x nguyên để C < 0 

g, Ta có :  \(\frac{x+4}{x+2}=\frac{x+2+2}{x+2}=1+\frac{2}{x+2}\)

Để C nguyên khi \(x+2\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

x + 21-12-2
x-1-30-4

h, Ta có : \(D=C\left(x^2-4\right)=\frac{x+4}{x+2}.\frac{\left(x-2\right)\left(x+2\right)}{1}=x^2+2x-8\)

\(=\left(x+1\right)^2-9\ge-9\)

Dấu ''='' xảy ra khi x = -1 

Vậy GTNN D là -9 khi x = -1 

5 tháng 8 2017

a)\(M=\left(\frac{x^3+1}{x+1}-x\right):\left(1-\frac{1}{x}\right)\left(ĐKXĐ:x\ne-1;0\right)\)

   \(M=\left[\frac{\left(x+1\right)\left(x^2-x+1\right)}{x+1}-x\right]:\left(\frac{x-1}{x}\right)\)

   \(M=\left(x^2-x+1-x\right).\frac{x}{x-1}\)

    \(M=\left(x-1\right)^2.\frac{x}{x-1}\)

    \(M=x\left(x-1\right)\)

b)Ta có:\(\left|A\right|-A=0\)

          \(\Leftrightarrow\left|x\left(x-1\right)\right|-x\left(x-1\right)=0\)

           \(\Leftrightarrow\left|x^2-x\right|-x^2+x=0\)

\(TH1:x^2-x-x^2+x=0\)

           \(\Leftrightarrow0x=0\)

              \(\Rightarrow x\)vô số nghiệm

\(TH2:-\left(x^2-x\right)-x^2+x=0\)

             \(\Leftrightarrow x-x^2-x^2+x=0\)

               \(\Leftrightarrow2x=0\)

                     \(\Rightarrow x=0\)

5 tháng 8 2017

c)Để M < \(-\frac{1}{2}\) ta có:

        \(x\left(x-1\right)< -\frac{1}{2}\)

           \(\Leftrightarrow x^2-x< -\frac{1}{2}\)

             \(\Leftrightarrow x^2-x+\frac{1}{2}< 0\)

            \(\Leftrightarrow x^2-2.\frac{1}{2}x+\frac{1}{4}+\frac{1}{4}< 0\)

             \(\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{1}{4}< 0\)

     Vậy ko có x nào TM để A < -1/2

26 tháng 6 2018

ĐKXĐ: \(x\ne0;x\ne\pm2\)

a, \(A=\left(\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)

\(=\left[\frac{3x^2}{3x\left(x-2\right)\left(x+2\right)}-\frac{6x\left(x+2\right)}{3x\left(x-2\right)\left(x+2\right)}+\frac{3x\left(x-2\right)}{3x\left(x-2\right)\left(x+2\right)}\right]:\left[\frac{\left(x-2\right)\left(x+2\right)}{x+2}+\frac{10-x^2}{x+2}\right]\)

\(=\frac{3x^2-6x^2-12x+3x^2-6x}{3x\left(x-2\right)\left(x+2\right)}:\frac{x^2-4+10-x^2}{x+2}\)

\(=\frac{-18x}{3x\left(x-2\right)\left(x+2\right)}\cdot\frac{x+2}{6}\)

\(=\frac{-3x}{3x\left(x-2\right)}=\frac{-1}{x-2}\)

b, Ta có: \(\left|x\right|=\frac{1}{2}\Rightarrow x=\pm\frac{1}{2}\)

Với \(x=\frac{1}{2}\) thì \(A=\frac{-1}{\frac{1}{2}-2}=\frac{-1}{\frac{-3}{2}}=\frac{2}{3}\)

Với \(x=\frac{-1}{2}\)thì \(A=\frac{-1}{\frac{-1}{2}-2}=\frac{-1}{\frac{-5}{2}}=\frac{2}{5}\)

c, Để A=2 <=> \(\frac{-1}{x-2}=2\Leftrightarrow-1=2x-4\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)

Vậy x=3/2 thì A=2

d, Để A<0 <=> \(\frac{-1}{x-2}< 0\Leftrightarrow x-2>0\Leftrightarrow x>2\)

Vậy với x>2 thì A<0

e, Để A thuộc Z <=> x-2 thuộc Ư(-1)={1;-1}

Ta có: x-2=1 => x=3 (t/m)

          x-2=-1 => x=1 (t/m)

Vậy x thuộc {3;1} thì A thuộc Z

26 tháng 6 2018

a)  \(A=\left(\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)(ĐKXĐ: x khác 0; + 2)

\(A=\left(\frac{x^2}{x\left(x^2-4\right)}+\frac{2}{2-x}+\frac{1}{x+2}\right):\left(\frac{\left(x-2\right)\left(x+2\right)}{x+2}+\frac{10-x^2}{x+2}\right)\)

\(A=\left(\frac{x^2}{x\left(x-2\right)\left(x+2\right)}-\frac{2x\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}+\frac{x\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}\right):\frac{6}{x+2}\)

\(A=\frac{-6x}{x\left(x-2\right)\left(x+2\right)}.\frac{x+2}{6}=\frac{-x}{x\left(x-2\right)}=\frac{1}{2-x}.\)

Vậy \(A=\frac{1}{2-x}.\)

b) \(\left|x\right|=\frac{1}{2}\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{1}{2}\end{cases}}\). Nếu \(x=\frac{1}{2}\)thì \(A=\frac{1}{2-\frac{1}{2}}=\frac{2}{3}.\)

Nếu \(x=-\frac{1}{2}\)thì \(A=\frac{1}{2+\frac{1}{2}}=\frac{2}{5}.\)Vậy ...

c) Để A=2 thì \(\frac{1}{2-x}=2\Rightarrow4-2x=1\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}.\)Vậy ...

d) Để A<0 thì \(\frac{1}{2-x}< 0\Rightarrow2-x< 0\Leftrightarrow x>2.\)Vậy ...

e) Để A thuộc Z thì \(\frac{1}{2-x}\in Z\Rightarrow1⋮2-x\). Mà 2-x thuộc Z (Do x thuộc Z)

Nên \(2-x\in\left\{1;-1\right\}\Rightarrow x\in\left\{1;3\right\}.\)(t/m ĐKXĐ)

Vậy x=1 hay x=3 thì A nguyên.