Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=\left(\frac{1}{\sqrt{x}+2}-\frac{1}{\sqrt{x}-2}\right):\frac{-\sqrt{x}}{x-2\sqrt{x}}\)
\(A=\left(\frac{\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\frac{-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(A=\frac{\sqrt{x}-2-\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\frac{-\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}}\)
\(A=\frac{4}{\sqrt{x}+2}\)
b, \(A=\frac{4}{\sqrt{x}+2}=\frac{2}{3}\)
=> 2cawn x + 4 = 12
=> 2.căn x = 8
=> căn x = 4
=> x = 16 (thỏa mãn)
c, có A = 4/ căn x + 2 và B = 1/căn x - 2
=> A.B = 4/x - 4
mà AB nguyên
=> 4 ⋮ x - 4
=> x - 4 thuộc Ư(4)
=> x - 4 thuộc {-1;1;-2;2;-4;4}
=> x thuộc {3;5;2;6;0;8} mà x > 0 và x khác 4
=> x thuộc {3;5;2;6;8}
d, giống c thôi
Lời giải:
Để $B$ nguyên thì $x^2+19x+93$ là scp.
Đặt $x^2+19x+93=t^2$ với $t\in\mathbb{N}$
$\Leftrightarrow 4x^2+76x+372=4t^2$
$\Leftrightarrow (2x+19)^2+11=(2t)^2$
$\Leftrightarrow 11=(2t-2x-19)(2t+2x+19)$
Đến đây là dạng pt tích cơ bản với $2t-2x-19, 2t+2x+19$ là các số nguyên.
\(A=\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{2\sqrt{x}-1}{\sqrt{x}-1}+\frac{x-2}{x-3\sqrt{x}+2}\)
\(A=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}-\frac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\) \(+\frac{x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(A=\frac{x-4\sqrt{x}+3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}-\frac{2x-5\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\) \(+\frac{x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(A=\frac{x-4\sqrt{x}+3-2x+5\sqrt{x}-2+x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(A=\frac{\sqrt{x}-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(A=\frac{1}{\sqrt{x}-2}\)
vậy \(A=\frac{1}{\sqrt{x}-2}\)
A có nghĩa khi \(\sqrt{x}-2>0\)
\(\Leftrightarrow\sqrt{x}=2\)
\(\Leftrightarrow x=4\)
vậy \(x=4\) thì A có nghĩa
b) theo ý a) \(A=\frac{1}{\sqrt{x}-2}\)
theo bài ra \(A>2\) \(\Leftrightarrow\frac{1}{\sqrt{x}-2}>2\)
\(\Leftrightarrow\frac{1}{\sqrt{x}-2}-2>0\)
\(\Leftrightarrow\frac{1}{\sqrt{x}-2}-\frac{2\left(\sqrt{x}-2\right)}{\sqrt{x}-2}>0\)
\(\Leftrightarrow\frac{1-2\sqrt{x}+4}{\sqrt{x}-2}>0\)
\(\Leftrightarrow\frac{5-2\sqrt{x}}{\sqrt{x}-2}>0\)
\(\Rightarrow\hept{\begin{cases}5-2\sqrt{x}>0\\\sqrt{x}-2>0\end{cases}}\) hoặc \(\hept{\begin{cases}5-2\sqrt{x}< 0\\\sqrt{x}-2< 0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}-2\sqrt{x}>-5\\\sqrt{x}>2\end{cases}}\) hoặc \(\hept{\begin{cases}-2\sqrt{x}< -5\\\sqrt{x}< 2\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x< \frac{25}{4}\\x>4\end{cases}}\)hoặc \(\hept{\begin{cases}x>\frac{25}{4}\\x< 4\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}4< x< \frac{25}{4}\\x\notin\varnothing\end{cases}}\)
vậy \(4< x< \frac{25}{4}\) thì \(A>2\)
a) Đặt \(A=\frac{\sqrt{x}+5}{\sqrt{x}+1}\)(1)
\(\left(1\right)\Leftrightarrow\frac{\sqrt{x}+1+4}{\sqrt{x}+1}=1+\frac{4}{\sqrt{x}+1}\)
\(A\inℤ\Leftrightarrow\frac{4}{\sqrt{x}+1}\inℤ\Leftrightarrow4⋮\left(\sqrt{x}+1\right)\)
\(\Leftrightarrow\sqrt{x}+1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Mà \(\sqrt{x}\ge0\Leftrightarrow\sqrt{x}+1\ge1\)nên \(\sqrt{x}+1\in\left\{1;2;4\right\}\)
\(TH1:\sqrt{x}+1=1\Leftrightarrow\sqrt{x}=0\Leftrightarrow x=0\)
\(TH2:\sqrt{x}+1=2\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\)
\(TH2:\sqrt{x}+1=4\Leftrightarrow\sqrt{x}=3\Leftrightarrow x=9\)
Vậy \(x\in\left\{0;1;9\right\}\)thì \(\frac{\sqrt{x}+5}{\sqrt{x}+1}\)đạt giá trị nguyên
b) \(\frac{2}{\sqrt{x}+2}\inℤ\Leftrightarrow2⋮\left(\sqrt{x}+2\right)\)
\(\Leftrightarrow\sqrt{x}+2\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Vì \(\sqrt{x}\ge0\Leftrightarrow\sqrt{x}+2\ge2\)nên \(\sqrt{x}+2=2\Leftrightarrow\sqrt{x}=0\Leftrightarrow x=0\)
Vậy x = 0 thì \(\frac{2}{\sqrt{x}+2}\inℤ\)
P = AB = \(\frac{3\sqrt{x}}{\sqrt{x}+1}\)= 3 - \(\frac{3}{\sqrt{x}+1}\)
Để P nguyên thì \(1+\sqrt{x}\)phải là ước của 3 hay \(1+\sqrt{x}\)= (1;3)
Thế vào giải ra
\(a,Q=\left(\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\frac{\sqrt{x}-2}{x-1}\right)\cdot\frac{\sqrt{x}+1}{\sqrt{x}};x>0;x\ne1;x\ne4\)
\(=\left(\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\frac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\cdot\frac{\sqrt{x}+1}{\sqrt{x}}\)
\(=\left(\frac{x-\sqrt{x}+2\sqrt{x}-2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}-\frac{x+\sqrt{x}-2\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right)\cdot\frac{\sqrt{x}+1}{\sqrt{x}}\)
\(=\frac{x-\sqrt{x}+2\sqrt{x}-2-x-\sqrt{x}+2\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\cdot\frac{\sqrt{x}+1}{\sqrt{x}}\)
\(=\frac{2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\frac{1}{\sqrt{x}}\)
\(=\frac{2}{x-1}\)
\(a,\)\(Q=\left(\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\frac{\sqrt{x}-2}{x-1}\right).\)\(\frac{\sqrt{x}+1}{\sqrt{x}}\)
\(=\left(\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\frac{\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right).\)\(\frac{\sqrt{x}+1}{\sqrt{x}}\)
\(=\frac{\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+1\right)^2}.\frac{\sqrt{x}+1}{\sqrt{x}}-\frac{\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}.\frac{\sqrt{x}+1}{\sqrt{x}}\)
\(=\frac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{x+\sqrt{x}-2-x+\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{2}{x-1}\)\(\left(đpcm\right)\)
\(b,Q=\frac{2}{x-1}\)
\(Q\in Z\Leftrightarrow\frac{2}{x-1}\in Z\Rightarrow x-1\inƯ_2\)
Mà \(Ư_2=\left\{\pm1;\pm2\right\}\)
TH1 : \(x-1=-1\Rightarrow x=0\)
TH2 : \(x-1=1\Rightarrow x=2\)
TH3 : \(x-1=-2\Rightarrow x=-1\)
TH4 :\(x-1=2\Rightarrow x=3\)
\(\Rightarrow\)x nguyên lớn nhất là 3 để Q là số nguyên
ta có đk: x khác 4 và 9
ta có: \(\frac{2\sqrt{x}-9}{x-2\sqrt{x}-3\sqrt{x}+6}-\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\frac{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
=> \(\frac{2\sqrt{x}-9-x+9+2x-3\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
=\(\frac{x+\sqrt{x}-2\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
để Q nguyên => \(\sqrt{x}+1⋮\sqrt{x}-3=>\sqrt{x}-3+4⋮\sqrt{x}-3\)
=> \(4⋮\sqrt{x}-3=>\sqrt{x}-3=1,-1,2,-2,4,-4\)
=> \(\sqrt{x}=-2,-4,-1,-5,1,-7=>x=4,16,1,25,49\)
mà x khác 4 => .....
a/ ta có:
\(x\sqrt{2y-1}+y\sqrt{2x-1}=\sqrt{x}.\sqrt{2xy-x}+\sqrt{y}.\sqrt{2xy-y}\)
\(\le\frac{x+2xy-x}{2}+\frac{y+2xy-y}{2}=2xy\)
Dấu = xảy ra khi ...