Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(A=\frac{1}{x^2-3030x+4062241}\)
\(=\frac{1}{x^2-2.1515x+1515^2+1767016}\)
\(=\frac{1}{\left(x-1515\right)^2+1767016}\)
Ta có: \(\left(x-1515\right)^2\ge0\forall x\)
\(\Rightarrow Max_A=\frac{1}{1767016}\Leftrightarrow x=1515\)
\(C=\frac{30}{4x-4x^2-6}=\frac{-30}{4x^2-4x+6}=\frac{-30}{\left(2x-1\right)^2+5}\)
Vì \(\left(2x-1\right)^2\ge0\Rightarrow\left(2x-1\right)^2+5\ge5\Rightarrow\frac{1}{\left(2x-1\right)^2+5}\le\frac{1}{5}\Rightarrow C=\frac{-30}{\left(2x-1\right)^2+5}\ge\frac{-30}{5}=-6\)
Dấu "=" xảy ra khi x=1/2
Vậy Cmin=-6 khi x=1/2
\(E=\frac{1000}{x^2+y^2-20x-20y+2210}=\frac{1000}{\left(x-10\right)^2+\left(y-10\right)^2+2010}\)
Vì \(\left(x-10\right)^2\ge0;\left(y-10\right)^2\ge0\Rightarrow\left(x-10\right)^2+\left(y-10\right)^2\ge0\)
\(\Rightarrow\left(x-10\right)^2+\left(y-10\right)^2+2010\ge2010\)
\(\Rightarrow\frac{1}{\left(x-10\right)^2+\left(y-10\right)^2+2010}\le\frac{1}{2010}\)
\(\Rightarrow E=\frac{1000}{\left(x-10\right)^2+\left(y-10\right)^2+2010}\le\frac{1000}{2010}=\frac{100}{201}\)
Dấu "=" xảy ra khi x=y=10
Vậy Emax = 100/201 khi x=y=10
\(D=\frac{x^{2}-2x+2018}{x^{2}}\)
\(D=\frac{x^{2}-2*x*1+1+2017}{x^{2}}\)
\(D= \frac{(x-1)^{2}+2017}{x^{2}}\)
Nhận xét: Để D Đặt GTNN thì \((x-1)^{2} + 2017\) Đạt GTNN
Mà \((x-1)^{2} \geq 0\) . Nên:
\((x-1)^{2}+2017\)\(\geq 2017\). GTNN của \((x-1)^{2}+2017=2017 \) Khi x-1=0 => x=1
Thay x=1 vào D
GTNN D=2017
\(A=\frac{1}{x^2-3030x+4062241}\)
\(=\frac{1}{x^2-2.x.1515+2295225+1767016}\)
\(=\frac{1}{\left(x-1515\right)^2+1767016}\)
Ta có : \(\left(x-1515\right)^2\ge0\Rightarrow\left(x-1515\right)^2+1767016\ge1767016\)
\(\Rightarrow A=\frac{1}{\left(x-1515\right)^2+1767016}\le\frac{1}{1767016}\)
Dấu "=" xảy ra \(\Leftrightarrow x-1515=0\Leftrightarrow x=1515\)
Ta có mẫu thức bằng
\(=x^2-2.1515+1515^2+1767016=\left(x-1515\right)^2+1767016\ge1767016\)
\(\Rightarrow A\le1767016\Rightarrow A_{MAX}=1767016\Leftrightarrow x=1515\)