\(\frac{\sqrt{x}+10}{\sqrt{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2020

Mạn phép xin sửa đề bài này thành tìm x nguyên ạ; nếu sai sót xin ib để lm lại:)

a) đk: \(x\ge0\)

+ Nếu: x không là số chính phương => A vô tỉ (loại)

+ Nếu: x là số chính phương => \(\sqrt{x}+2\) là số nguyên

Khi đó để A nguyên => \(\sqrt{x}+2\inƯ\left(8\right)\) , mà \(\sqrt{x}+2\ge2\left(\forall x\right)\)

=> \(\sqrt{x}+2\in\left\{2;4;8\right\}\Rightarrow\sqrt{x}\in\left\{0;2;6\right\}\Rightarrow x\in\left\{0;4;36\right\}\)

b) đk: \(x\ge0\)

Xét 2 TH như ở trên chứng minh x là số chính phương rồi làm như sau:

Ta có: \(B=\frac{\sqrt{x}+10}{\sqrt{x}+3}=1+\frac{7}{\sqrt{x}+3}\)

Để A nguyên => \(\frac{7}{\sqrt{x}+3}\inℤ\Rightarrow\sqrt{x}+3\inƯ\left(7\right)\)

Mà, \(\sqrt{x}+3\ge3\left(\forall x\right)\) => \(\sqrt{x}+3=7\Leftrightarrow\sqrt{x}=4\Rightarrow x=16\)

24 tháng 8 2020

a. \(\frac{8}{\sqrt{x}+2}\in Z\)

\(\Rightarrow\sqrt{x}+2\in\left\{\pm8;\pm4;\pm2;\pm1\right\}\)

\(\Rightarrow\sqrt{x}\in\left\{-10;-6;-4;-3;-1;0;2;6\right\}\)

Vì Vx lớn hơn hoặc bằng 0 \(\Rightarrow\sqrt{x}\in\left\{0;2;6\right\}\)

\(\Rightarrow x\in\left\{0;4;36\right\}\)

b. \(B=\frac{\sqrt{x}+10}{\sqrt{x}+3}=\frac{\sqrt{x}+3+7}{\sqrt{x}+3}=1+\frac{7}{\sqrt{x}+3}\)

Để B thuộc Z thì 7 / Vx + 3 thuộc Z

\(\Rightarrow\sqrt{x}+3\in\left\{\pm1;\pm7\right\}\)

Vì Vx lớn hơn hoặc = 0 với mọi x \(\Rightarrow\sqrt{x}=4\)

\(\Rightarrow x=16\)

c,d tương tự

12 tháng 9 2020

monw nhiều ạ

1. Cho biểu thức:\(C=\frac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+\:1}{\sqrt{x}+\:2}+\frac{\sqrt{x}+2}{1-\sqrt{x}}\)    a) Tìm điều kiện của x để C có nghĩa.    b) Rút gọn C.    c) Tìm các giá trị nguyên của x để giá trị C là số ngueyeenn.2. Cho biểu thức: \(A=x^2-3x\sqrt{y}+2y\)    a) Phân tích A thành nhân tử.    b) Tính giá trị của A khi: \(x=\frac{1}{\sqrt{6}-2}\); \(y=\frac{1}{9+4\sqrt{5}}\)3. Rút gọn rồi tính...
Đọc tiếp

1. Cho biểu thức:

\(C=\frac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+\:1}{\sqrt{x}+\:2}+\frac{\sqrt{x}+2}{1-\sqrt{x}}\)

    a) Tìm điều kiện của x để C có nghĩa.

    b) Rút gọn C.

    c) Tìm các giá trị nguyên của x để giá trị C là số ngueyeenn.


2. Cho biểu thức: \(A=x^2-3x\sqrt{y}+2y\)

    a) Phân tích A thành nhân tử.

    b) Tính giá trị của A khi: \(x=\frac{1}{\sqrt{6}-2}\)\(y=\frac{1}{9+4\sqrt{5}}\)


3. Rút gọn rồi tính giá trị của biểu thức tại \(x=3\)

\(M=\frac{\sqrt{x-2\sqrt{2}}}{\sqrt{x^2-4x\sqrt{2}+8}}-\frac{\sqrt{x+2\sqrt{2}}}{\sqrt{x^2+4x\sqrt{2}+8}}\)


4. Cho biểu thức: ​\(\frac{\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}}{\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1}\)với \(x\ge0\)và \(x\:\ne9\)

    a) Rút gọn P.

    b) Tìm giá trị của x ​để \(P\:< -\frac{1}{2}\)

    c) Tìm giá trị của x ​để P có giá trị nhỏ nhất.


5. Cho biểu thức:

\(Q=\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)

    a) Tìm giá trị của x để Q có nghĩa.

    b) Rút gọn Q.

    c) Tìm giá trị của của x để Q có giá trị nguyên.

4
11 tháng 5 2017

moi tay

8 tháng 6 2017

giải giùm mình bài 5 với

17 tháng 10 2019

\(a,x=7-4\sqrt{3}=4-2.2\sqrt{3}+3\) (Thỏa mãn ĐKXĐ)

\(=\left(2-\sqrt{3}\right)^2\)

\(B=\frac{2}{\sqrt{x}-2}=\frac{2}{\sqrt{\left(2-\sqrt{3}\right)^2}-2}\)

\(=\frac{2}{2-\sqrt{3}-2}=-\frac{2\sqrt{3}}{3}\)

\(b,P=\frac{B}{A}=\frac{2}{\sqrt{x}-2}:\left(\frac{\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}-2}\right)\)

\(=\frac{2}{\sqrt{x}-2}:\left(\frac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right)\)

\(=\frac{2}{\sqrt{x}-2}:\frac{\sqrt{x}+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{2}{\sqrt{x}-2}:\frac{2\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{2}{\sqrt{x}-2}.\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{2\left(\sqrt{x}+1\right)}\)

\(=\frac{\sqrt{x}+2}{\sqrt{x}+1}\)

17 tháng 10 2019

\(P=\frac{4}{3}\Rightarrow\frac{\sqrt{x}+2}{\sqrt{x}+1}=\frac{4}{3}\)

\(\Leftrightarrow3\left(\sqrt{x}+2\right)=4\left(\sqrt{x}+1\right)\)

\(\Leftrightarrow3\sqrt{x}+6=4\sqrt{x}+4\)

\(\Leftrightarrow6-4=4\sqrt{x}-3\sqrt{x}\)

\(\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\)(ko thỏa mãn ĐKXĐ)

=>pt vo nghiệm

d,\(\left(\sqrt{x}+1\right)P-\sqrt{x}-4\sqrt{x-1}+26=-6x+10\sqrt{5x}\)

\(\Leftrightarrow\left(\sqrt{x}+1\right)\frac{\sqrt{x}+2}{\sqrt{x}+1}-\sqrt{x}-4\sqrt{x-1}+26=-6x+10\sqrt{5x}\)

\(\Leftrightarrow\sqrt{x}+2-\sqrt{x}-4\sqrt{x-1}+26=-6x+10\sqrt{5x}\)

\(\Leftrightarrow-4\sqrt{x-1}+28=-6x+10\sqrt{5x}\)

\(\Leftrightarrow x=5\)

Bài 1:

a) Để căn thức \(\sqrt{\frac{2}{9-x}}\) có nghĩa thì \(\left\{{}\begin{matrix}\frac{2}{9-x}\ge0\\9-x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9-x>0\\x\ne9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 9\\x\ne9\end{matrix}\right.\Leftrightarrow x< 9\)

b) Ta có: \(x^2+2x+1\)

\(=\left(x+1\right)^2\)

\(\left(x+1\right)^2\ge0\forall x\)

nên \(x^2+2x+1\ge0\forall x\)

Do đó: Căn thức \(\sqrt{x^2+2x+1}\) xác được với mọi x

c) Để căn thức \(\sqrt{x^2-4x}\) có nghĩa thì \(x^2-4x\ge0\)

\(\Leftrightarrow x\left(x-4\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x-4\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\x-4< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x\ge4\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\x< 4\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge4\\x< 0\end{matrix}\right.\)

Bài 3:

a) Ta có: \(\sqrt{\left(3-\sqrt{10}\right)^2}\)

\(=\left|3-\sqrt{10}\right|\)

\(=\sqrt{10}-3\)(Vì \(3< \sqrt{10}\))

b) Ta có: \(\sqrt{9-4\sqrt{5}}\)

\(=\sqrt{5-2\cdot\sqrt{5}\cdot2+4}\)

\(=\sqrt{\left(\sqrt{5}-2\right)^2}\)

\(=\left|\sqrt{5}-2\right|\)

\(=\sqrt{5}-2\)(Vì \(\sqrt{5}>2\))

c) Ta có: \(3x-\sqrt{x^2-2x+1}\)

\(=3x-\sqrt{\left(x-1\right)^2}\)

\(=3x-\left|x-1\right|\)

\(=\left[{}\begin{matrix}3x-\left(x-1\right)\left(x\ge1\right)\\3x-\left(1-x\right)\left(x< 1\right)\end{matrix}\right.\)

\(=\left[{}\begin{matrix}3x-x+1\\3x-1+x\end{matrix}\right.=\left[{}\begin{matrix}2x+1\\4x-1\end{matrix}\right.\)