
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(B=\frac{x-1-4\sqrt{x}+\sqrt{x}+1}{x-1}.\frac{x-1}{x-2\sqrt{x}}\)
\(=\frac{x-3\sqrt{x}}{x-2\sqrt{x}}\)
\(=\frac{\sqrt{x}-3}{\sqrt{x}-2}\)
a.Ta co:
\(\frac{\sqrt{x}-3}{\sqrt{x}-2}< 1\left(x\ge0,x\ne4\right)\)
\(\Leftrightarrow\sqrt{x}-3< \sqrt{x}-2\)
\(\Leftrightarrow3>2\)
Vay \(B< 1\left(\forall x\ge0,x\ne4\right)\)
Lát mình giải 2 câu kia,di ăn com cái
b.Ta co:
\(\frac{\sqrt{x}-3}{\sqrt{x}-2}< \frac{3}{2}\)
\(\Leftrightarrow2\sqrt{x}-6< 3\sqrt{x}-6\)
\(\Leftrightarrow x>0\)
Vay \(B< \frac{3}{2}\left(\forall x>0,x\ne4\right)\)
c.Ta co:
\(\frac{\sqrt{x}-3}{\sqrt{x}-2}>\sqrt{x}-1\)
\(\Leftrightarrow\sqrt{x}-3>x-3\sqrt{x}+2\)
\(\Leftrightarrow x-4\sqrt{x}+5< 0\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)^2+1< 0\) (vo ly)
Vay khong co gia tri nao cua x thoa man \(B>\sqrt{x}-1\)

ĐK \(\hept{\begin{cases}x\ge0\\x\ne9\end{cases}}\)
a. Ta có \(P=\frac{\sqrt{x}-\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\frac{\sqrt{x}-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\)
\(=\frac{3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{3}=\frac{\sqrt{x}}{\sqrt{x}+3}\)
b.Để \(P< 0,5\Rightarrow\frac{\sqrt{x}}{\sqrt{x}+3}-0,5< 0\Leftrightarrow\frac{2\sqrt{x}-\sqrt{x}-3}{2\cdot\left(\sqrt{x}+3\right)}< 0\)
\(\Leftrightarrow\frac{\sqrt{x}-3}{2\left(\sqrt{x}+3\right)}< 0\Leftrightarrow\sqrt{x}-3< 0\Leftrightarrow0\le x< 9\)
Vậy \(0\le x< 9\)thì \(P< 0,5\)
c. Để \(P=\frac{1}{2\sqrt{x}}\Rightarrow\frac{\sqrt{x}}{\sqrt{x}+3}=\frac{1}{2\sqrt{x}}\Leftrightarrow2x-\sqrt{x}-3=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=\frac{3}{2}\\\sqrt{x}=-1\left(l\right)\end{cases}\Leftrightarrow x=\frac{9}{4}\left(tm\right)}\)
Vậy \(x=\frac{9}{4}\)
các bạn sửa lại giúp mình đề bài ở đoạn P=.........-(1/căn x) thành P=.......+(1/căn x) với nha cảm ơn nhiều XD

a) \(P=\left[\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-\left(3x+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right]:\left[\frac{\left(2\sqrt{x}-2\right)-\left(\sqrt{x}-3\right)}{\sqrt{x}-3}\right]\left(ĐK:x\ge0;x\ne9\right)\)
\(=\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)
\(=\frac{-3\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\frac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\frac{-3}{\sqrt{x}+3}\)

\(B=\frac{\sqrt{x}+2}{\sqrt{x}-3}-\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{3\left(\sqrt{x}-1\right)}{x-5\sqrt{x}+6}\left(ĐKXĐ:x\ne4;x\ne9;x\ge0\right)\)
\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}-\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{x-4-\left(x-2\sqrt{x}-3\right)-3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}=\frac{2-\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}=\frac{1}{3-\sqrt{x}}\)
\(B< -1\)\(\Leftrightarrow\) \(\frac{1}{3-\sqrt{x}}< -1\)\(\Rightarrow\sqrt{x}-3< 1\Leftrightarrow x< 16\)
Mặt khác : Vì \(B< -1< 0\)nên \(3-\sqrt{x}< 0\Rightarrow x>9\)
Vậy để \(B< -1\)thì \(9< x< 16\)
\(2B\in Z\Leftrightarrow B\in Z\)
\(\Leftrightarrow\frac{1}{3-\sqrt{x}}\in Z\)=> \(3-\sqrt{x}\inƯ\left(1\right)\)
\(\Rightarrow3-\sqrt{x}\in\left\{-1;1\right\}\)\(\Rightarrow x\in\left\{16\right\}\)( Loại x = 4 vì không thoả mãn điều kiện)
Xin lỗi vì để bài mình ghi lộn :))
Còn lại thì ổn rồi :))

\(Q=\left(\frac{\sqrt{x}^2-1}{2\sqrt{x}}\right)^2.\left[\frac{\left(\sqrt{x}-1\right)^2-\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right]\)
\(Q=\left[\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{2\sqrt{x}}\right].\left[\frac{\left(\sqrt{x}-1+\sqrt{x}+1\right)\left(\sqrt{x}-1-\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right]\)
\(Q=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{2\sqrt{x}}.\frac{-4\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(Q=\frac{-4\sqrt{x}}{2\sqrt{x}}=-2\)

Trả lời:
a, \(B=\left(\frac{x+\sqrt{x}-1}{x\sqrt{x}-1}-\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\right):\frac{1}{\sqrt{x}-1}\left(ĐK:x>0;x\ne1\right)\)
\(=\left(\frac{x+\sqrt{x}-1}{\left(\sqrt{x}\right)^3-1}-\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\right):\frac{1}{\sqrt{x}-1}\)
\(=\left(\frac{x+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\right).\left(\sqrt{x}-1\right)\)
\(=\left(\frac{x+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right).\left(\sqrt{x}-1\right)\)
\(=\frac{x+\sqrt{x}-1-\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\left(\sqrt{x}-1\right)\)
\(=\frac{x+\sqrt{x}-1-\left(x-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\left(\sqrt{x}-1\right)\)
\(=\frac{x+\sqrt{x}-1-x+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\left(\sqrt{x}-1\right)\)
\(=\frac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\left(\sqrt{x}-1\right)=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)
b, \(B< \frac{1}{3}\Leftrightarrow\frac{\sqrt{x}}{x+\sqrt{x}+1}< \frac{1}{3}\)
\(\Leftrightarrow\frac{\sqrt{x}}{x+\sqrt{x}+1}-\frac{1}{3}< 0\)
\(\Leftrightarrow\frac{3\sqrt{x}}{3\left(x+\sqrt{x}+1\right)}-\frac{x+\sqrt{x}+1}{3\left(x+\sqrt{x}+1\right)}< 0\)
\(\Leftrightarrow\frac{3\sqrt{x}-x-\sqrt{x}-1}{3\left(x+\sqrt{x}+1\right)}< 0\)
\(\Leftrightarrow\frac{-x+2\sqrt{x}-1}{3\left(x+\sqrt{x}+1\right)}< 0\)
\(\Leftrightarrow\frac{-\left(x-2\sqrt{x}+1\right)}{3\left(x+\sqrt{x}+1\right)}< 0\)
\(\Leftrightarrow\frac{-\left(\sqrt{x}-1\right)^2}{3\left(x+\sqrt{x}+1\right)}< 0\)
Vì \(-\left(\sqrt{x}-1\right)^2< 0\) với mọi \(x>0;x\ne1\)
\(3\left(x+\sqrt{x}+1\right)>0\) với mọi \(x>0;x\ne1\)
\(\Rightarrow\frac{-\left(\sqrt{x}-1\right)^2}{3\left(x+\sqrt{x}+1\right)}< 0\) luôn đúng với mọi \(x>0;x\ne1\)
Vậy \(B< \frac{1}{3}\)
c, \(B=\frac{1}{2\sqrt{x}+1}\Leftrightarrow\frac{\sqrt{x}}{x+\sqrt{x}+1}=\frac{1}{2\sqrt{x}+1}\)
\(\Leftrightarrow\sqrt{x}\left(2\sqrt{x}+1\right)=x+\sqrt{x}+1\)
\(\Leftrightarrow2x+\sqrt{x}=x+\sqrt{x}+1\)
\(\Leftrightarrow x=1\) (tm)
Vậy x = 1 là giá trị cần tìm
Ta có :
\(\sqrt{x}+1>\sqrt{x}-3\)
\(\Leftrightarrow\)\(B=\frac{\sqrt{x}+1}{\sqrt{x}-3}>1\)
Vậy không có x thỏa mãn đề bài
Chúc bạn học tốt ~
mình tưởng phải thế này rồi chuyển hết về 1 vế rồi quy đồng chứ bạn
\(\frac{\sqrt{x}+1}{\sqrt{x}-3}< 1\)