K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2017

để A nguyên thì \(A^2\)nguyên nên \(\left(\frac{\sqrt{x+1}}{\sqrt{x-3}}\right)^2\) nguyên \(\Leftrightarrow\frac{x+1}{x-3}\) nguyên \(\Rightarrow x+1⋮x-3\Leftrightarrow4⋮x-3\Rightarrow x-3\leftarrowƯ\left\{4\right\}\Leftrightarrow x-3\leftarrowƯ\left\{1,-1,2,-2,4,-4\right\}\)

\(\Leftrightarrow x\leftarrow\left\{4,2,5,1,7,-1\right\}\)Vậy x = 4,2,5,1,7,-1

10 tháng 12 2016

Bạn ơi !

10 tháng 12 2016

Hình như là đề sai rồi đúng k ??

13 tháng 11 2015

\(A=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3}{\sqrt{x}-3}+\frac{4}{\sqrt{x}-3}\)

 A là số nguyên ,=> \(\sqrt{x}-3\)là Ư(4) ={ 1;2;4}

=> x =16

=> x =25

=> x= 47

13 tháng 6 2015

\(A=\frac{\sqrt{x+1}}{\sqrt{x-3}}=\sqrt{\frac{x+1}{x-3}}=\sqrt{\frac{x-3}{x-3}}+\sqrt{\frac{4}{x-3}}=1+\frac{2}{\sqrt{x-3}}\)

Để A nguyên thì \(\sqrt{x-3}\inƯ\left(2\right)\)

Mà Ư(2)={+-1;+-2}

*)\(\sqrt{x-3}=^+_-1\Rightarrow x-3=1\Rightarrow x=4\)

*)\(\sqrt{x-3}=^+_-2\Rightarrow x-3=4\Rightarrow x=7\)

Vậy x={4;7} thì A nguyên

22 tháng 10 2017

cảm ơn bạn lắm mk đang cần 2 bài dạng này

12 tháng 8 2018

Để A thuộc Z

=> A^2 thuộc Z

=> x-3+4/x-3 = 1+4/x-3 thuộc z

=> x-3 thuộc ước của 4 Giải ra

9 tháng 3 2017

Ta có : A=\(\frac{\sqrt{x}+1}{\sqrt{x}-3}\)=    \(\frac{\sqrt{x}-3+4}{\sqrt{x}-3}\)  =      1+\(\frac{4}{\sqrt{x}-3}\)                                                                                                                        Để A có giá trị nguyên thi \(\sqrt{x}-3\)là ước của 4                                                                                                                                           \(\sqrt{x}-3\)= +-1;+-2;+-4                                                                                                                                                                                      Nếu \(\sqrt{x}-3\)=1 suy ra x=16                                                                                                                                                                      Nếu\(\sqrt{x}-3\)=-1 suy ra x=4                                                                                                                                                                        Nếu\(\sqrt{x}-3\)= 2 suy ra  x=25                                                                                                                                                                      Nếu \(\sqrt{x}-3\)=-2 suy ra x=1                                                                                                                                                                        Nếu \(\sqrt{x}-3\)=4 suy ra x=49                                                                                                                                                                      Neu  \(\sqrt{x}-3\)=-4 suy ra \(\sqrt{x}\)=-1 (loại)                                                                                                                    Vậy x=.......                                                                                                                                                                                                               Bạn thử cách này xem sao nhé mình cũng chưa thử cách này bao giờ

ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne9\end{matrix}\right.\)

Để A nguyên thì \(\sqrt{x}+1⋮\sqrt{x}-3\)

\(\Leftrightarrow\sqrt{x}-3+4⋮\sqrt{x}-3\)

mà \(\sqrt{x}-3⋮\sqrt{x}-3\)

nên \(4⋮\sqrt{x}-3\)

\(\Leftrightarrow\sqrt{x}-3\inƯ\left(4\right)\)

\(\Leftrightarrow\sqrt{x}-3\in\left\{1;-1;2;-2;4;-4\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{4;2;5;1;7;-1\right\}\)

mà \(\sqrt{x}\ge0\forall x\) thỏa mãn ĐKXĐ

nên \(\sqrt{x}\in\left\{1;2;4;5;7\right\}\)

hay \(x\in\left\{1;4;16;25;49\right\}\)(nhận)

Vậy: Để A nguyên thì \(x\in\left\{1;4;16;25;49\right\}\)