Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{x-3}{x+5}=\dfrac{5}{7}\)
⇔\(7\left(x-3\right)=5\left(x+5\right)\)
⇔\(7x-21=5x+25\)
⇔\(7x-21-5x-25=0\)
⇔\(2x-46=0\)
⇔\(2x=46\)
⇔\(x=23\)
a) Áp dụng t/c dtsbn:
\(\dfrac{x}{7}=\dfrac{y}{13}=\dfrac{x+y}{7+13}=\dfrac{40}{20}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.7=14\\y=2.13=26\end{matrix}\right.\)
b) \(\dfrac{3}{x}=\dfrac{7}{y}\Rightarrow\dfrac{x}{3}=\dfrac{y}{7}\)
Và \(x+16=y\Rightarrow y-x=16\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{y-x}{7-3}=\dfrac{16}{4}=4\)
\(\Rightarrow\left\{{}\begin{matrix}x=4.3=12\\y=4.7=28\end{matrix}\right.\)
\(A=\dfrac{1}{2}\left(x-3\right)^2+10\ge10\\ A_{min}=10\Leftrightarrow x-3=0\Leftrightarrow x=3\)
\(A=\dfrac{1}{2}\left(x-3\right)^2+10\ge10\forall x\)
Dấu '=' xảy ra khi x=3
\(E=\dfrac{98:\left(\dfrac{4}{5}\cdot\dfrac{5}{4}\right)}{\dfrac{16}{25}-\dfrac{1}{25}}+\dfrac{\left(\dfrac{27}{25}-\dfrac{2}{25}\right)\cdot\dfrac{7}{4}}{\left(\dfrac{59}{9}-\dfrac{13}{4}\right)\cdot\dfrac{36}{17}}\\ E=\dfrac{98}{\dfrac{3}{5}}+\dfrac{\dfrac{7}{4}}{\dfrac{119}{36}\cdot\dfrac{36}{17}}\\ E=\dfrac{490}{3}+\dfrac{\dfrac{7}{4}}{7}=\dfrac{490}{3}+\dfrac{1}{4}=\dfrac{1963}{12}\)
bạn ơi chỗ kia mik nhìn hơi loạn tí bạn giải thích giúp mik với
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
\(\left\{{}\begin{matrix}\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}\\\dfrac{a}{c}=\dfrac{b}{d}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}\left(\dfrac{a}{c}\right)^2=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\\\left(\dfrac{a}{c}\right)^2=\dfrac{ab}{cd}\end{matrix}\right.\)
\(\Rightarrow\dfrac{ab}{cd}=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
a)
\(\left|x-2\right|-\dfrac{3}{5}=\dfrac{1}{2}\\ \left|x-2\right|=\dfrac{1}{2}+\dfrac{3}{5}\\ \left|x-2\right|=\dfrac{11}{10}\\ =>\left[{}\begin{matrix}x-2=\dfrac{11}{10}\\x-2=-\dfrac{11}{10}\end{matrix}\right.\left[{}\begin{matrix}x=\dfrac{31}{10}\\x=\dfrac{9}{10}\end{matrix}\right.\)
b)
\(\left(x-\dfrac{7}{3}\right):\dfrac{-1}{3}=0,4\\ x-\dfrac{7}{3}=0,4\cdot\dfrac{-1}{3}\\ x-\dfrac{7}{3}=-\dfrac{2}{15}\\ x=-\dfrac{2}{15}+\dfrac{7}{3}\\ x=\dfrac{11}{5}\)
c)
\(\left|x-3\right|=5\\ =>\left[{}\begin{matrix}x-3=5\\x-3=-5\end{matrix}\right.\left[{}\begin{matrix}x=5+3\\x=-5+3\end{matrix}\right.\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)
d)
\(\left(2x+3\right)^2=25\\ =>\left[{}\begin{matrix}2x+3=5\\2x+3=-5\end{matrix}\right.\left[{}\begin{matrix}2x=2\\2x=-8\end{matrix}\right.\left[{}\begin{matrix}x=1\\x=-4\end{matrix}\right.\)
e)
\(\dfrac{3}{4}+\dfrac{1}{4}:x=\dfrac{2}{5}\)
\(\dfrac{1}{4}:x=\dfrac{2}{5}-\dfrac{3}{4}\)
\(\dfrac{1}{4}:x=-\dfrac{7}{20}\)
\(x=\dfrac{1}{4}:\dfrac{-7}{20}\\ x=-\dfrac{5}{7}\)
f)
\(\left(x-\dfrac{1}{2}\right)^3=\dfrac{1}{27}\\ =>x-\dfrac{1}{2}=\dfrac{1}{3}\\ x=\dfrac{1}{3}+\dfrac{1}{2}\\ x=\dfrac{5}{6}\)
Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{b}{a}=\dfrac{d}{c}\)
\(\Leftrightarrow1+\dfrac{b}{a}=1+\dfrac{d}{c}\)
\(\Leftrightarrow\dfrac{a+b}{a}=\dfrac{c+d}{c}\)
\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
Áp dụng t/c dtsbn:
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\Leftrightarrow\dfrac{a+b}{a}=\dfrac{c+d}{c}\)
c) \(\dfrac{x+4}{20}=\dfrac{5}{x+4}\)
⇔\(\left(x+4\right)\left(x+4\right)=100\)
⇔\(\left(x+4\right)^2=10^2\)
⇔\(\left[{}\begin{matrix}x+4=10\\x+4=-10\end{matrix}\right.\)
⇔\(\left[{}\begin{matrix}x=6\\x=-14\end{matrix}\right.\)
\(c,ĐK:x\ne-4\\ PT\Leftrightarrow\left(x+4\right)^2=100\\ \Leftrightarrow\left[{}\begin{matrix}x+4=10\\x+4=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\left(tm\right)\\x=-14\left(tm\right)\end{matrix}\right.\\ d,ĐK:x\ne-2;x\ne-3\\ PT\Leftrightarrow\left(x-1\right)\left(x+3\right)=\left(x-2\right)\left(x+2\right)\\ \Leftrightarrow x^2+2x-3=x^2-4\\ \Leftrightarrow2x=-1\Leftrightarrow x=-\dfrac{1}{2}\left(tm\right)\)