\(\frac{1}{2}\)+ \(\frac{1}{6}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2019

\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{x\left(x+1\right)}=\frac{2011}{2012}\)

\(\Rightarrow\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{x\left(x+1\right)}=\frac{2011}{2012}\)

\(\Rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{x+1}=\frac{2011}{2012}\)

\(\Rightarrow1-\frac{1}{x+1}=\frac{2011}{2012}\)

\(\Rightarrow\frac{1}{x+1}=1-\frac{2011}{2012}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{2012}\)

\(\Rightarrow x+1=2012\)

\(\Rightarrow x=2011\)

29 tháng 3 2019

\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{x\left(x+1\right)}=\frac{2011}{2012}\)

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{2011}{2012}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2011}{2012}\)

\(1-\frac{1}{x+1}=\frac{2011}{2012}\)

\(\frac{1}{x+1}=1-\frac{2011}{2012}=\frac{1}{2012}\)

\(\Leftrightarrow x+1=2012\)

\(\Leftrightarrow x=2011\)

Vậy ...

P/s: Hoq chắc :<

29 tháng 3 2019

a) \(\frac{29}{30}\)- (\(\frac{13}{23}\)+X)=\(\frac{7}{69}\)

\(\frac{13}{23}\)+X=\(\frac{29}{30}\)-\(\frac{7}{69}\)

\(\frac{13}{23}\)+X=\(\frac{199}{230}\)

X=\(\frac{199}{230}\)-\(\frac{13}{23}\)

X=\(\frac{3}{10}\)

b)1/2+1/6+1/12+...+1/x(x+1)=2011/2012

=>1/1.2+1/2.3+1/3.4+...+1/x(x+1)=2011/2012

=>1-1/2+1/2-1/3+1/3+1/4+...+1/x+1/x+1=2011/2012

=>1-1/x+1=2011/2012

=>1/x+1=1-2011-2012

=>1/x+1=2012/2012-2011/2012

1/x+1=1/2012

=>x+1=2012

=>x=2011

29 tháng 3 2019

a) 3/10

19 tháng 7 2016

a)\(\frac{2}{6}+\frac{2}{12}+...+\frac{2}{x\left(x+1\right)}=\frac{2}{2013}\)

\(\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{x\left(x+1\right)}=\frac{2}{2013}\)

\(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2}{2013}\)

\(\frac{1}{2}-\frac{1}{x+1}=\frac{1}{2013}\)

đề sai

b)\(\frac{x+4}{2000}+1+\frac{x+3}{2001}+1=\frac{x+2}{2002}+1+\frac{x+1}{2003}+1\)

\(\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)

\(\frac{x+2004}{2000}+\frac{x+2004}{2001}-\frac{x+2004}{2002}-\frac{x+2004}{2003}=0\)

\(\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)

\(x+2004=0\).Do \(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\ne0\)

\(x=-2004\)

c)\(\frac{x+5}{205}-1+\frac{x+4}{204}-1+\frac{x+3}{203}-1=\frac{x+166}{366}-1+\frac{x+167}{367}-1+\frac{x+168}{368}-1\)

\(\frac{x-200}{205}+\frac{x-200}{204}+\frac{x-200}{203}=\frac{x-200}{366}+\frac{x-200}{367}+\frac{x-200}{368}\)

\(\frac{x-200}{205}+\frac{x-200}{204}+\frac{x-200}{203}-\frac{x-200}{366}-\frac{x-200}{367}-\frac{x-200}{368}=0\)

\(\left(x-200\right)\left(\frac{1}{205}+\frac{1}{204}+\frac{1}{203}-\frac{1}{366}-\frac{1}{367}-\frac{1}{368}\right)=0\)

\(x-200=0\).Do\(\frac{1}{205}+\frac{1}{204}+\frac{1}{203}-\frac{1}{366}-\frac{1}{367}-\frac{1}{368}\ne0\)

\(x=200\)

d)chịu

19 tháng 2 2020

Lời giải:

a)

\(-3\frac{5}{8}+\left(-\frac{3}{8}+\frac{9}{4}\right)\)

\(=-\frac{29}{8}+\left(-\frac{3}{8}+\frac{18}{8}\right)\)

\(=-\frac{29}{8}+\frac{15}{8}=-\frac{14}{8}=-\frac{7}{4}\)

b) \(\frac{\left(-9\right)\cdot11+32\cdot\left(-9\right)}{\left(-43\right)\cdot15+12\cdot\left(-43\right)}=\frac{\left(-9\right)\left(11+32\right)}{\left(-43\right)\left(15+12\right)}=\frac{\left(-9\right)\cdot43}{\left(-43\right)\cdot27}=\frac{\left(-1\right)\cdot1}{\left(-1\right)\cdot3}=\frac{1}{3}\)

c) Thay \(x=\frac{2011}{2012}\)vào biểu thức \(x\cdot\frac{1}{3}+2x\cdot\frac{3}{6}-3x\cdot\frac{4}{9}\)ta có :

\(\frac{2011}{2012}\cdot\frac{1}{3}+2\cdot\frac{2011}{2012}\cdot\frac{3}{6}-3\cdot\frac{2011}{2012}\cdot\frac{4}{9}\)

\(=\frac{2011}{2012}\cdot\frac{1}{3}+2\cdot\frac{2011}{2012}\cdot\frac{1}{2}-3\cdot\frac{2011}{2012}\cdot\frac{4}{9}\)

\(=\frac{2011}{6036}+\frac{2011}{2012}-\frac{2011}{1509}\)

\(=\frac{2011}{6036}+\frac{6033}{6036}-\frac{8044}{6036}=\frac{2011+6033-8044}{6036}=0\)

14 tháng 4 2018

=\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+......+\frac{2}{x\left(x+1\right)}\)

=\(2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.....+\frac{1}{x\left(x+1\right)}\right)\)

=\(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)\)

=\(2\left(\frac{1}{2}-\frac{1}{x+1}\right)\)

\(\frac{1}{2}-\frac{1}{x+1}\)=\(\frac{2011}{4026}\)

bạn tính tiếp đi, mình bận rồi nhé, mình gợi ý hết cho bạn rồi, tự làm tiếp nhé bạn, bye

26 tháng 12 2017

a) Đặt \(A=\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+.....+\frac{1}{\left(x-2\right)x}+\frac{1}{x\left(x+2\right)}\)

=> \(3A=\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+.....+\frac{3}{\left(x-2\right)x}+\frac{3}{x\left(x+2\right)}\)

=> \(3A=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+....+\frac{1}{\left(x-2\right)}-\frac{1}{x}+\frac{1}{x}-\frac{1}{x+2}\)

=> 3A = \(\frac{1}{5}-\frac{1}{x+2}\)

=> A = \(\frac{1}{15}-\frac{1}{3x+6}\)

Mà : A = \(\frac{101}{1540}\)

=> \(\frac{1}{15}-\frac{1}{3x+6}=\frac{101}{1540}\)

=> \(\frac{1}{3x+6}=\frac{1}{15}-\frac{101}{1540}=\frac{1}{924}\)

=> 3x + 6 = 924

=> 3(x + 2) = 924

=> x + 2 = 308

=> x = 306

26 tháng 12 2017

a) Ta có: \({{1} \over x(x+2)}= {{1} \over 3}({{1} \over x}-{{1} \over x+2})\)  \(\Rightarrow\) \({{1} \over 3}({{1} \over 5}-{{1} \over 8}+{{1} \over 8}-...+{{1} \over x}-{{1} \over x+2})={{101} \over 1540} \)\(\Leftrightarrow\) \({{1} \over 3}({{1} \over 5}-{{1} \over x+2})={{101} \over 1540}\)\(\Leftrightarrow\)x+2 = 308 \(\Leftrightarrow\) x=306 Lúc sau lm hơi tắt mọi người thông cảm

19 tháng 7 2016

MS=\(\left(1+\frac{2011}{2}\right)+\left(1+\frac{2010}{3}\right)+...+\left(1+\frac{2}{2011}\right)+\left(1+\frac{1}{2012}\right)\)

     =\(2013\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2012}\right)\)

=> \(x.\frac{1}{2013}=1\)

=>x=2013