Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow6x^2+2x+12x-6x^2=7\)
=>14x=7
hay x=1/2
b: \(\Leftrightarrow72-20x-36x+84=30x-240-6x-84\)
=>-56x+156=24x-324
=>-80x=-480
hay x=6
c: \(\Leftrightarrow6x^2+27x+4x+18-6x^2-x-12x-2=x+1-x+6=7\)
=>18x+16=7
=>18x=-9
hay x=-1/2
\(|\dfrac{4}{3}x-\dfrac{3}{4}|=\left|-\dfrac{1}{3}\right|.\left|x\right|\Leftrightarrow|\dfrac{4}{3}x-\dfrac{3}{4}|=\dfrac{1}{3}.\left|x\right|\left(1\right)\)
Tìm nghiệm \(\dfrac{4}{3}x-\dfrac{3}{4}=0\Leftrightarrow\dfrac{4}{3}x=\dfrac{3}{4}\Leftrightarrow x=\dfrac{3}{4}.\dfrac{3}{4}\Leftrightarrow x=\dfrac{9}{16}\)
\(x=0\)
Lập bảng xét dấu :
\(x\) \(0\) \(\dfrac{9}{16}\)
\(\left|\dfrac{4}{3}x-\dfrac{3}{4}\right|\) \(-\) \(0\) \(-\) \(0\) \(+\)
\(\left|x\right|\) \(-\) \(0\) \(+\) \(0\) \(+\)
TH1 : \(x< 0\)
\(\left(1\right)\Leftrightarrow-\dfrac{4}{3}x+\dfrac{3}{4}=\dfrac{1}{3}.\left(-x\right)\)
\(\Leftrightarrow-\dfrac{4}{3}x+\dfrac{3}{4}=-\dfrac{1}{3}.x\)
\(\Leftrightarrow\dfrac{4}{3}x-\dfrac{1}{3}x=\dfrac{3}{4}\)
\(\Leftrightarrow x=\dfrac{3}{4}\) (loại vì không thỏa \(x< 0\))
TH2 : \(0\le x\le\dfrac{9}{16}\)
\(\left(1\right)\Leftrightarrow-\dfrac{4}{3}x+\dfrac{3}{4}=\dfrac{1}{3}x\)
\(\Leftrightarrow\dfrac{4}{3}x+\dfrac{1}{3}x=\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{5}{3}x=\dfrac{3}{4}\Leftrightarrow x=\dfrac{3}{4}.\dfrac{3}{5}\Leftrightarrow x=\dfrac{9}{20}\) (thỏa điều kiện \(0\le x\le\dfrac{9}{16}\))
TH3 : \(x>\dfrac{9}{16}\)
\(\left(1\right)\Leftrightarrow\dfrac{4}{3}x-\dfrac{3}{4}=\dfrac{1}{3}x\)
\(\Leftrightarrow\dfrac{4}{3}x-\dfrac{1}{3}x=\dfrac{3}{4}\Leftrightarrow x=\dfrac{3}{4}\) (thỏa điều kiện \(x>\dfrac{9}{16}\))
Vậy \(x\in\left\{\dfrac{9}{20};\dfrac{3}{4}\right\}\)
a) Đặt A(x)=0
\(\Leftrightarrow4x-1=0\)
\(\Leftrightarrow4x=1\)
hay \(x=\dfrac{1}{4}\)
b) Đặt B(x)=0
\(\Leftrightarrow2x^2-8=0\)
\(\Leftrightarrow2x^2=8\)
\(\Leftrightarrow x^2=4\)
hay \(x\in\left\{2;-2\right\}\)
câu a tẹo mình chụp bài cho nhé
b) \(2\left|x-1\right|+3x=7\)
\(\Leftrightarrow2\left|x-1\right|=7-3x\left(1\right)\)
Vì \(2\left|x-1\right|\ge0;\forall x\)
\(\Rightarrow7-3x\ge0;\forall x\)
\(\Rightarrow x\le\frac{7}{3}\)
Từ \(\left(1\right)\Rightarrow\orbr{\begin{cases}2\left(x-1\right)=7-3x\\2\left(1-x\right)=7-3x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x-2=7-3x\\2-2x=7-3x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}5x=9\\x=5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{9}{5}\left(tm\right)\\x=5\left(loai\right)\end{cases}}\)
Vậy \(x=\frac{9}{5}\)
a, ( 8x - 3 ) ( 3x + 2 ) - ( 4x + 7 ) ( x + 4 ) = ( 2x + 1 ) ( 5x - 1 )
( 24x2 + 16x - 9x - 6 ) - ( 4x2 - 16x - 7x + 28 ) = 10x2 - 2x + 5x -1
24x2 + 16x - 9x - 6 -4x2 - 16x - 7x - 10x2 + 2x - 5x = 6 + 28 - 1
10x2 -19x = 33
10x2 - 19x -33 = 0 \(\Leftrightarrow\)10x( x+ 3 ) + 11 ( x- 3 ) = 0
=> ( x- 3 ) ( 10x + 11 ) = 0\(\Rightarrow\orbr{\begin{cases}x=3\\x=\frac{-11}{10}\end{cases}}\)
b, 4( x - 1 ) ( x + 5 ) - ( x + 2 ) ( x + 5 ) = 3( x - 1 ) ( x + 2 )
4( x2 - 5x - x + 5 ) - ( x2 + 5x + 2x + 10 ) = 3( x2 + 2x - x - 2 )
4x2 - 20x - 4x + 20 - x2 - 5x - 2x - 10 = 3x2 + 6x - 3x - 6
( 4x2 - x2 ) + ( -20x - 4x - 5x - 2x ) + 20 - 10 = 3x2 + ( 6x - 3x ) - 6
3x2 - 31x - 3x2 - 3x = -6-10
-34x = -16
x = \(\frac{8}{17}\)
ta có
|x^2 +|3x+1||=x^2 +6 <=> x^2 +|3x+1|=x^2+6 <=> |3x+1|=6 ( đến đây thì dễ rồi nhá)