K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2017

x+(x+1)+(x+2)+(x+3)+...+(x+2016)=2017

( x + x + x + x + ... + x ) + ( 1 + 2 + 3 + ... + 2016 ) = 2017

2017x + 2033136 = 2017

2017x = 2017 - 2033136

2017x = -2031119

x = -2031119 : 2017

x = -1007

3 tháng 8 2017

Ta có : x + (x + 1) + (x + 2) + (x + 3) +......+ (x + 2016) = 2017

=> (x + x + x + ..... + x) + (1 + 2 + 3 + .... + 2016) = 2017

=> 2017x + 2033136 = 2017

=> 2017x = 2017 - 2033136

=> 2017x = -203119

=> x = -203119 : 2017

=> x = -1007

11 tháng 3 2017

180,50248

a: ĐKXĐ: x<>1; x<>2; x<>-2; x<>-1

\(P=\dfrac{2017x+2017-2016x+2016-2014x-2016}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{-2015x+2017}{x^2-4}\)

2 tháng 11 2016

Xét : 

1. Nếu x = 2016 hoặc x = 2017 thì thỏa mãn đề bài

2. Nếu \(x< 2016\) thì \(\left|x-2016\right|^{2016}>0\) , \(\left|x-2017\right|^{2017}>1\)

Suy ra \(\left|x-2016\right|^{2016}+\left|x-2017\right|^{2017}>1\)=> Vô nghiệm.

3. Nếu \(x>2017\) thì \(\left|x-2016\right|^{2016}>1\) , \(\left|x-2017\right|^{2017}>0\)

Suy ra \(\left|x-2016\right|^{2016}+\left|x-2017\right|^{2017}>1\) => Vô nghiệm.

Vậy pt có hai nghiệm là ............................ 

4 tháng 3 2018

nếu 2016<x<2017 thì sao?

2 tháng 1 2017

y=x+z-a (a=2016)

y^3=(x+z)^3-a^3-3(x+z).a(x+z-a)

-y^3=-[x^3+z^3+3xz(x+z)-a^3-3(x+z).a(x+z-a)]

-3(x+z)[xz-ay]+2016^3=2017^2

2017 không chia hết cho 3 vô nghiệm nguyên

Bạn test lại xem hay biến đổi nhầm nhỉ

2 tháng 1 2017

Bị lừa rồi.

thực ra rất đơn giản

\(x-y+z=2016\)(1)

\(x^3-y^3+z^3=2017^2\)(2)

(1) số số hạng lẻ phải chắn=> tất cả chẵn (*) hoạc 1 số chẵn(**)

(2) số số hạng lẻ phải lẻ=> vô nghiệm nguyên