\(x\left(3x-1\right)+6x-2=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2021

\(x\left(3x-1\right)+6x-2=0\)

\(\Leftrightarrow3x^2-x+6x-2=0\)

\(\Leftrightarrow3x^2+5x-2=0\)

\(\Leftrightarrow3x^2+6x-x-2=0\)

\(\Leftrightarrow3x\left(x+2\right)-\left(x+2\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=-2\end{matrix}\right.\)

10 tháng 10 2019

a, (3x - 5)(2x - 1) - (x + 2)(6x - 1) = 0

=> 6x^2 - 3x - 10x + 5 - (6x^2 - x + 12x - 2) = 0

=> 6x^2 - 13x + 5 - 6x^2 - 11x + 2 = 0

=> -24x + 7 = 0 

=> - 24x = -7

=> x = 7/24

b, (3x - 2)(3x + 2) - (3x - 1)^2 = -5

=> 9x^2 - 4 - 9x^2 + 6x - 1 = -5

=> 6x - 5 = -5

=> 6x = 0

=> x = 0

c, x^2 = -6x - 8

=> x^2 + 6x + 8 = 0

=> x^2 + 2.x.3 + 9 - 1 = 0

=> (x + 3)^2 = 1

=> x + 3 = 1 hoặc x + 3 = -1

=> x = -2 hoặc x = -4

8 tháng 2 2018

a. \(9\left(x+2\right)-3\left(x+2\right)=0\)

\(\Leftrightarrow9x+18-3x-6=0\)

\(\Leftrightarrow6x+12=0\)

\(\Leftrightarrow x=-2\)

e. \(\left(2x-1\right)^2-45=0\)

\(\Leftrightarrow4x^2-2x+1-45=0\)

\(\Leftrightarrow4x^2-2x-44=0\)

Đến đó tự giải tiếp nha!

c. \(2\left(2x-5\right)-3x=0\)

\(\Leftrightarrow4x-10-3x=0\)

\(\Leftrightarrow x-10=0\)

\(\Leftrightarrow x=10\)

g. \(2x^2-6x=0\)

\(\Leftrightarrow2x\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

20 tháng 2 2018

sao làm nhung cau de the

21 tháng 10 2019

a/ \(\left(2x-3\right)^2-\left(3x+2\right)^2=5x\left(2-x\right)\)

<=> \(\left(2x-3-3x-2\right)\left(2x-3+3x+2\right)=5x\left(2-x\right)\)

<=> \(\left(-x-5\right)\left(5x-1\right)=5x\left(2-x\right)\)

<=> \(-5x^2-25x+x+5=10x-5x^2\)

<=> \(10x+25x-x=5\)

<=> \(34x=5\)

<=> \(x=\frac{5}{34}\)

b/ pt <=>  \(2^3x^3-3.2^2.x^2.1+3.2.x.1^2-1^3=0\)

<=> \(\left(2x-1\right)^3=0\)

<=> 2 x - 1  = 0

<=> x = 1/2.

23 tháng 10 2019

x2 - 5x - 36 = 0

=> x2 - 9x + 4x - 36 = 0

=> x(x - 9) + 4(x - 7) = 0

=> (x + 4)(x - 7) = 0

=> \(\orbr{\begin{cases}x+4=0\\x-7=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=-4\\x=7\end{cases}}\)

6x2 - (2x + 5)(3x - 2) = -12

=> 6x2 - 6x2 + 4x - 15x + 10 = -12

=> -11x = -22

=> x = 2

x2 - 25 = 6x - 9

=> x2 - 25 - 6x + 9 = 0

=> x2 - 6x - 16 = 0

=> x2 - 8x + 2x - 16 = 0

=> x(x - 8) + 2(x - 8) = 0

=> (x + 2)(x - 8) = 0

=> \(\orbr{\begin{cases}x+2=0\\x-8=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=-2\\x=8\end{cases}}\)

21 tháng 12 2017

1, \(5x\left(x-1\right)=x-1\Rightarrow5x\left(x-1\right)-\left(x-1\right)=0\)

\(\Rightarrow\left(x-1\right)\left(5x-1\right)=0\Rightarrow\orbr{\begin{cases}x-1=0\\5x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{5}\end{cases}}}\)

2, \(2x\left(12x-5\right)-8x\left(3x-1\right)=30\)

\(\Rightarrow24x^2-10x-24x^2+8x=30\) \(\Rightarrow-2x=30\Rightarrow x=-15\)

3, \(3x\left(3-2x\right)+6x\left(x-1\right)=15\) \(\Rightarrow9x-6x^2+6x^2-6x=15\Rightarrow3x=15\Rightarrow x=5\)

4, \(x\left(x-3\right)+x-3=0\Rightarrow\left(x-3\right)\left(x+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-3=0\\x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}}\) 

10 tháng 10 2019

a) \(\left(3x-5\right)\left(2x-1\right)-\left(x+2\right)\left(6x-1\right)=0\)

\(6x^2-13x+5-6x^2-11x+2=0\)

\(24x=7\)\(x=\frac{7}{24}\)

b) \(\left(3x-2\right)\left(3x+2\right)-\left(3x-1\right)^2=-5\)

\(9x^2-4-9x^2+6x-1=5\)

\(6x=10\)\(x=\frac{5}{3}\)

c) \(x^2=-6x-8\)\(x^2+6x+8=0\)\(\left(x+2\right)\left(x+4\right)=0\)

\(\left[{}\begin{matrix}x=-2\\x=-4\end{matrix}\right.\)

4 tháng 5 2017

1/ (5x+2)2+(6x-3y)2=0

Ta nhận thấy: (5x+2)2\(\ge\)0  và (6x-3y)2\(\ge\)0

Tổng của 2 số dương bằng 0 khi và chỉ khi cả 2 số đều bằng 0

=> \(\hept{\begin{cases}\left(5x+2\right)^2=0\\\left(6x-3y\right)^2=0\end{cases}}< =>\hept{\begin{cases}5x+2=0\\2x-y=0\end{cases}}\)

=> \(\hept{\begin{cases}x=-\frac{2}{5}\\y=2x=-\frac{4}{5}\end{cases}}\)

2/ Làm tương tự 1:

\(\hept{\begin{cases}\left(x+2\right)^2=0\\\left(3x-7y\right)^2=0\end{cases}}< =>\hept{\begin{cases}x+2=0\\3x-7y=0\end{cases}}\)

=> \(\hept{\begin{cases}x=-2\\y=\frac{3x}{7}=-\frac{6}{7}\end{cases}}\)

12 tháng 3 2020

\(\left(x+1\right)^2=4\left(x^2-2x+1\right)^2\\\Leftrightarrow\left(x+1\right)^2=4\left(x-1\right)^2\\\Leftrightarrow \left(x+1\right)^2-4\left(x-1\right)^2=0\\\Leftrightarrow \left(x+1\right)^2-\left(2x-2\right)^2=0\\\Leftrightarrow \left[\left(x+1\right)+\left(2x-2\right)\right]\left[\left(x+1\right)-\left(2x-2\right)\right] =0\\ \Leftrightarrow\left(x+1+2x-2\right)\left(x+1-2x+2\right)=0\\\Leftrightarrow \left(3x-1\right)\left(3-x\right)=0\\\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\3-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{3}\\x=3\end{matrix}\right. \)

Vậy phương trình có tập nghiệm \(S=\left\{\frac{1}{3};3\right\}\)

\(\left(2x+7\right)^2=9\left(x+2\right)^2\\ \Leftrightarrow\left(2x+7\right)^2-9\left(x+2\right)^2=0\\ \Leftrightarrow\left(2x+7\right)^2-\left(3x+6\right)^2=0\\ \Leftrightarrow\left[\left(2x+7\right)+\left(3x+6\right)\right]\left[\left(2x+7\right)-\left(3x+6\right)\right]=0\\ \Leftrightarrow\left(2x+7+3x+6\right)\left(2x+7-3x-6\right)=0\\ \Leftrightarrow\left(5x+13\right)\left(1-x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}5x+13=0\\1-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-13}{5}\\x=1\end{matrix}\right.\)

Vậy phương trình có tập nghiệm \(S=\left\{\frac{-13}{5};1\right\}\)

\(4\left(2x+7\right)^2=9\left(x+3\right)^2\\\Leftrightarrow 4\left(2x+7\right)^2-9\left(x+3\right)=0\\ \Leftrightarrow\left(4x+14\right)^2-\left(3x+9\right)^2=0\\\Leftrightarrow \left[\left(4x+14\right)+\left(3x+9\right)\right]\left[\left(4x+14\right)-\left(3x+9\right)\right]=0\\\Leftrightarrow \left(4x+14+3x+9\right)\left(4x+14-3x-9\right)=0\\\Leftrightarrow \left(7x+23\right)\left(x+5\right)=0\\\Leftrightarrow\left[{}\begin{matrix}7x+23=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-23}{7}\\x=-5\end{matrix}\right. \)

Vậy phương trình có tập nghiệm \(S=\left\{\frac{-23}{7};-5\right\}\)

15 tháng 3 2020

tiếp đi bạnhehe