Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x\left(x-2\right)+x-2=0\)
<=> \(\left(x-2\right)\left(x+1\right)=0\)
<=> \(\orbr{\begin{cases}x-2=0\\x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)
Vậy...
b) \(5x\left(x-3\right)-x+3=0\)
<=> \(\left(x-3\right)\left(5x-1\right)=0\)
<=> \(\orbr{\begin{cases}x-3=0\\5x-1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=3\\x=\frac{1}{5}\end{cases}}\)
Vậy...
a. x(x-2)+x-2=0
=> (x-2).(x+1)=0
=> x-2=0 hoặc x+1=0
=> x=2 hoặc x=-1
b. 5x(x-3)-x+3=0
=> 5x(x-3)-(x-3)=0
=> (x-3).(5x-1)=0
=> x-3=0 hoặc 5x-1=0
=> x=3 hoặc x=1/5
a, x.( x - 2 ) + 2x - 4 = 0
<=> (x-2)(x+2)=0
<=> x=2 V x=-2
b, 5x.(x - 3 ) - x + 3 = 0
<=> (x-3)(5x-1)=0
<=> x=3 V x=1/5
a ) \(x.\left(x-2\right)+2x-4=0\)
\(\Leftrightarrow x^2-2x+2x-4=0\)
\(\Leftrightarrow x^2-4=0\)
\(\Leftrightarrow x^2=4\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=-2\end{array}\right.\)
b ) \(5x.\left(x-3\right)-x+3=0\)
\(\Leftrightarrow5x.\left(x-3\right)+\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(5x+1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-3=0\\5x+1=0\end{array}\right.\Leftrightarrow\left[\begin{array}{nghiempt}x=3\\x=-\frac{1}{5}\end{array}\right.\)
Vậy ............
Ta có:
a) \(x\left(x-2\right)+x-2=0\)
\(\Rightarrow x\left(x-2\right)+\left(x-2\right)=0\)
\(\Rightarrow\left(x+1\right)\left(x-2\right)=0\)
\(\Rightarrow\hept{\begin{cases}x+1=0\\x-2=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=-1\\x=2\end{cases}}\)
b) \(5x\left(x-3\right)-x+3=0\)
\(\Rightarrow5x\left(x-3\right)-\left(x-3\right)=0\)
\(\Rightarrow\left(5x-1\right)\left(x-3\right)=0\)
\(\Rightarrow\hept{\begin{cases}5x-1=0\\x-3=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{1}{5}\\x=3\end{cases}}\)
a) x ( x - 2 ) + x - 2 = 0
x ( x - 2 ) + ( x - 2 ) . 1 = 0
( x - 2 ) ( x + 1 ) = 0
\(\Rightarrow\orbr{\begin{cases}x-2=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)
Vậy x = 2 ; x = -1
b) 5x ( x - 3 ) - x + 3 = 0
5x ( x - 3 ) - ( x - 3 ) . 1 = 0
( x - 3 ) ( 5x - 1 ) = 0
\(\Rightarrow\orbr{\begin{cases}x-3=0\\5x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\5x=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=\frac{1}{5}\end{cases}}\)
Vậy x = 3 ; x = 1/5
Ta có : x5 + x4 + x + 1 = 0
<=> x4(x + 1) + (x + 1) = 0
<=> (x + 1)(x4 + 1) = 0
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x^4+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x^4=-1\end{cases}}\)
Vậy x = -1
Ta có : x4 + 3x3 - x - 3 = 0
<=> x3(x + 3) - (x + 3) = 0
<=> (x + 3) (x3 - 1) = 0
\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\x^3-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-3\\x^3=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-3\\x=1\end{cases}}\)
Vậy x thuộc {-3;1}
a) x(x - 2) + x - 2 = 0
(x - 2)(x + 1) = 0
Hoặc x - 2 = 0 => x = 2
Hoặc x + 1 = 0 => x = -1
Vậy x = -1; x = 2.
b) 5x(x - 3) - x + 3 = 0
5x(x - 3) - (x - 3) = 0
(x - 3)(5x - 1) = 0
Hoặc x - 3 = 0 => x = 3
Hoặc 5x - 1 = 0 => x = 1/5.
Vậy x = 1/5; x = 3.
x^3 + x = 0
x (x^2 + 1) = 0
x = 0 hoặc x^2 + 1 = 0
x = 0 hoặc x^2 = -1 (vô lí)
x = 0
MÌNH NGHĨ VẬY
\(x^3+x=0\Leftrightarrow x\left(x^2+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2=-1\left(ktm\right)\end{cases}}\)Vì :
\(x^2\ge0\forall x;-1< 0\)=> Phương trình vô nghiệm
Vậy phương trình có nghiệm là 0