Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A_4=\left(x^2-3x+5\right)^2+7x\cdot\left(x^2-3x+5\right)+12x^2\)
\(=\left(x^2-3x+5\right)^2+4x\cdot\left(x^2-3x+5\right)+3x\left(x^2-3x+5\right)+12x^2\)
\(=\left(x^2-3x+5\right)\left(x^2-3x+5+4x\right)+3x\left(x^2-3x+5+4x\right)\)
\(=\left[\left(x^2-3x+5\right)+3x\right]\cdot\left(x^2-3x+5+4x\right)\)
\(=\left(x^2-3x+5+3x\right)\left(x^2+x+5\right)\)
\(=\left(x^2+5\right)\left(x^2+x+5\right)\)
\(A_5=2\left(x^2+5x-2\right)^2-7\left(x^2+5x-2\right)\left(x^3+3\right)+5\left(x^2+3\right)^2\)
Đặt \(x^2+5x-2=a;x^3+3=b\),Ta có:
\(2a^2-7ab+5b^2=2a^2-5ab-2ab+5b^2=a\left(2a-5b\right)-b\left(2a-5b\right)=\left(2a+5b\right)\left(a-b\right)\)
Thay \(x^2+5x-2=a;x^3+3=b\),ta có:
.......................
bn làm nốt nhé
Bài 1:
a) x2 + 5x = 0
⇔ x(x + 5) = 0
⇔ \(\left[{}\begin{matrix}x=0\\x+5=0\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}x-0\\x=-5\end{matrix}\right.\)
b) (12x3 - 8x) : x - 4x(3x - 1) = 0
⇔ 12x2 - 8 - 12x2 + 4x = 0
⇔ 4x - 8 = 0
⇔ 4x = 8
⇔ x = 2
Bài 2:
\(P=\dfrac{x^2-12x+36}{2x^2-72}\)
\(=\dfrac{\left(x-6\right)^2}{2\left(x^2-6^2\right)}\)
\(=\dfrac{\left(x-6\right)^2}{2\left(x-6\right)\left(x+6\right)}\)
\(=\dfrac{x-6}{2\left(x+6\right)}\)
( 2x - 3 )2 = ( x + 1 )2
<=> ( 2x - 3 )2 - ( x + 1 )2 = 0
<=> [ ( 2x - 3 ) - ( x + 1 ) ][ ( 2x - 3 ) + ( x + 1 ) ] = 0
<=> ( 2x - 3 - x - 1 )( 2x - 3 + x + 1 ) = 0
<=> ( x - 4 )( 3x - 2 ) = 0
<=> \(\orbr{\begin{cases}x-4=0\\3x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=4\\x=\frac{2}{3}\end{cases}}\)
x2 - 2x = 24 ( 2x thì tìm đến bao giờ :)) )
<=> x2 - 2x - 24 = 0
<=> x2 + 4x - 6x - 24 = 0
<=> x( x + 4 ) - 6( x + 4 ) = 0
<=> ( x + 4 )( x - 6 ) = 0
<=> \(\orbr{\begin{cases}x+4=0\\x-6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-4\\x=6\end{cases}}\)
x2 + 2x - 15 = 0
<=> x2 - 3x + 5x - 15 = 0
<=> x( x - 3 ) + 5( x - 3 ) = 0
<=> ( x - 3 )( x + 5 ) = 0
<=> \(\orbr{\begin{cases}x-3=0\\x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-5\end{cases}}\)
4x2 + 12x + 8 = 0
<=> 4( x2 + 3x + 2 ) = 0
<=> 4( x2 + x + 2x + 2 ) = 0
<=> 4[ x( x + 1 ) + 2( x + 1 ) ]= 0
<=> 4( x + 1 )( x + 2 ) = 0
<=> \(\orbr{\begin{cases}x+1=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-2\end{cases}}\)
( x - 2 )2 - x2 + 4 = 0
<=> x2 - 4x + 4 - x2 + 4 = 0
<=> 8 - 4x = 0
<=> 4x = 8
<=> x = 2
a) x3 - 9x2 + 14x = 0
<=> x( x2 - 9x + 14 ) = 0
<=> x( x2 - 2x - 7x + 14 ) = 0
<=> x[ x( x - 2 ) - 7( x - 2 ) ] = 0
<=> x( x - 2 )( x - 7 ) = 0
<=> x = 0 hoặc x = 2 hoặc x = 7
b) x3 - 5x2 + 8x - 4 = 0
<=> x3 - 4x2 - x2 + 4x + 4x - 4 = 0
<=> ( x3 - 4x2 + 4x ) - ( x2 - 4x + 4 ) = 0
<=> x( x2 - 4x + 4 ) - ( x - 2 )2 = 0
<=> x( x - 2 )2 - ( x - 2 )2 = 0
<=> ( x - 2 )2( x - 1 ) = 0
<=> \(\orbr{\begin{cases}x-2=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=1\end{cases}}\)
c) x4 - 2x3 + x2 = 0
<=> x2( x2 - 2x + 1 ) = 0
<=> x2( x - 1 )2 = 0
<=> \(\orbr{\begin{cases}x^2=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
d) 2x3 + x2 - 4x - 2 = 0
<=> ( 2x3 + x2 ) - ( 4x + 2 ) = 0
<=> x2( 2x + 1 ) - 2( 2x + 1 ) = 0
<=> ( 2x + 1 )( x2 - 2 ) = 0
<=> \(\orbr{\begin{cases}2x+1=0\\x^2-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\pm\sqrt{2}\end{cases}}\)
DO khong co dieu kien cua x nen ban hay lay x la mot so tu nhien bat ki
giả sử lấy x=1 thì ta có thể dễ dàng tính được tổng bằng 4^5=1024
\(27x^3y-9xy^2=9xy\left(3x^2-y\right)\)
\(3x\left(x+y\right)-12x^2\left(x+y\right)=3x\left(x+y\right)\left(1-4x\right)\)
a) (x-2)3 - 6(x+1)2 - x3 + 12 = 0
<=> x3-6x2+12x-8-6(x2+2x+1)-x3+12=0
<=> x3-6x2+12x-8-6x2-12x-6-x3+12=0
<=> -12x2+4=0
<=> \(x=\frac{1}{\sqrt{3}},x=-\frac{1}{\sqrt{3}}\)
vậy pt có 2 nghiệm....
b) x3 - 6x2 + 12x - 8 = 0
<=> (x3-2x2)-(4x2-8x)+(4x+8)=0
<=> (x-2)(x2-4x+4)=(x-2)3=0
=> x=2 là nghiệm
c) 8x3 - 12x2 + 6x - 1 = 0
<=> (2x-1)3=0
<=> x=1/2
a) \(\left(x-2\right)^3-6\left(x+1\right)^2-x^3+12=0\)
\(\Leftrightarrow x^3-6x^2+12x-8-6\left(x^2+2x+1\right)-x^3+12=0\)
\(\Leftrightarrow x^3-6x^2+12x-8-6x^2-12x-6-x^3+12=0\)
\(\Leftrightarrow-12x^2-2=0\)
\(\Leftrightarrow-2\left(6x^2+1\right)=0\)
\(\Leftrightarrow6x^2+1=0\) (vô nghiệm)
Vậy không có giá trị nào của x thỏa mãn pt
b) \(x^3-6x^2+12x-8=0\)
\(\Leftrightarrow\left(x-2\right)^3=0\)
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)
Vậy x=2
c) \(8x^3-12x^2+6x-1=0\)
\(\Leftrightarrow\left(2x-1\right)^3=0\)
\(\Leftrightarrow2x-1=0\Leftrightarrow x=\frac{1}{2}\)
Vậy \(=\frac{1}{2}\)
A = x2 - 2xy + 6y2 - 12x + 2y + 45
= (x2 - 2xy + y2 - 12x + 12y + 36) + (5y2 - 10y + 5) + 4
= [(x - y)2 - 12(x - y) + 6^2] + 5(y2 - 2y + 1) + 4
= (x - y - 6)2 + 5(y - 1)2 + 4
Vì (x - y - 6)2 >= 0 với mọi x, y
5(y2 - 1) >= 0 với mọi y
=> Amin = 4 <=> y = 1, x = 7
\(x^3+6x^2+12x=0\)
\(\Leftrightarrow x\left(x^2+6x+12\right)=0\)(1)
Lại có\(x^2+6x+12=\left(x^2+6x+9\right)+3\)
\(=\left(x+3\right)^2+3>0\) \(\forall x\)(2)
Từ (1) và (2) => x=0
Vậy x=0