Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
VT >0 => VP > 0 => x >0
số dấu | | là (397 - 1): 4 + 1 = 100
\(\Rightarrow100x+\left(\frac{1}{1.5}+\frac{1}{5.9}+...+\frac{1}{397.401}\right)=101x\)
\(\Rightarrow x=\left(\frac{1}{1.5}+\frac{1}{5.9}+...+\frac{1}{397.401}\right)\)
\(\Rightarrow4x=1-\frac{1}{401}\)
\(x=\frac{100}{401}\)(tm)
Ta có: \(|x+\frac{1}{1\cdot5}|+|x+\frac{1}{5\cdot9}|+...+|x+\frac{1}{397\cdot401}|=101x\ge0\)
\(\Rightarrow x\ge0\Rightarrow x+\frac{1}{1\cdot5}+x+\frac{1}{5\cdot9}+...+x+\frac{1}{397\cdot401}=101x\)
\(\Rightarrow100x+\frac{1}{4}\cdot\left(\frac{4}{1\cdot5}+\frac{4}{5\cdot9}+...+\frac{4}{397\cdot401}\right)=101x\)
\(\Rightarrow\frac{1}{4}\cdot\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+...+\frac{1}{397}-\frac{1}{401}\right)=101x-100x=x\)
\(\Rightarrow\frac{1}{4}\cdot\frac{400}{401}=\frac{100}{401}=x\)
\(\left|x+\dfrac{1}{1.5}\right|+\left|x+\dfrac{1}{5.9}\right|+\left|x+\dfrac{1}{9.14}\right|+...+\left|x+\dfrac{1}{397.401}\right|\ge0\)
\(\Rightarrow101x\ge0\)
\(\Rightarrow x\ge0\)
\(\Rightarrow x+\dfrac{1}{1.5}+x+\dfrac{1}{5.9}+...+x+\dfrac{1}{397.401}=101x\)
\(\Rightarrow101x+\left(\dfrac{1}{1.5}+\dfrac{1}{5.9}+...+\dfrac{1}{397.401}\right)=x\)
\(\Rightarrow\dfrac{1}{4}\left(\dfrac{4}{1.5}+\dfrac{4}{5.9}+...+\dfrac{4}{397.401}\right)=x\)
\(\Rightarrow x=\dfrac{1}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+....+\dfrac{1}{397}-\dfrac{1}{401}\right)\)
\(\Rightarrow x=\dfrac{1}{4}\left(1-\dfrac{1}{401}\right)\)
\(\Rightarrow x=\dfrac{1}{4}.\dfrac{400}{401}\)
\(\Rightarrow x=\dfrac{100}{401}\)
\(\left|x+\frac{1}{1\cdot5}\right|+\left|x+\frac{1}{5\cdot9}\right|+...+\left|x+\frac{1}{397\cdot401}\right|=101x\left(1\right)\)
Điều kiện:\(101x\ge0\)\(\Rightarrow\left|x+\frac{1}{1\cdot5}\right|\ge0;\left|x+\frac{1}{5\cdot9}\right|\ge0;.....;\left|x+\frac{1}{397\cdot401}\right|\ge0\)
Do vậy\(\left(1\right)\)trở thành:\(x+\frac{1}{1\cdot5}+x+\frac{1}{5\cdot9}+...+x+\frac{1}{397\cdot401}=101x\)
\(\left(x+x+x+..+x\right)+\left(\frac{1}{1\cdot5}+\frac{1}{5\cdot9}+..+\frac{1}{397\cdot401}\right)\)
Có 100 số x
\(\Leftrightarrow\)\(100x+\frac{1}{4}\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+...+\frac{1}{397}-\frac{1}{401}\right)=101x\)
\(\Leftrightarrow\)\(100x+\frac{1}{4}\left(1-\frac{1}{401}\right)=101x\)
\(\Leftrightarrow100x+\frac{1}{4}\left(\frac{400}{401}\right)=101x\)
\(\Leftrightarrow\)\(x=\frac{1}{4}\cdot\frac{400}{401}\)\(=\frac{100}{401}\)
Bài này khá ez thôi:
a) bạn sửa lại đề rồi làm theo cách làm của b,c,d nhé
b) Ta có: \(\left|x+1,1\right|+\left|x+1,2\right|+\left|x+1,3\right|+\left|x+1,4\right|\ge0\left(\forall x\right)\)
\(\Rightarrow5x\ge0\Rightarrow x\ge0\) khi đó:
\(PT\Leftrightarrow x+1,1+x+1,2+x+1,3+x+1,4=5x\)
\(\Leftrightarrow x=5\)
c,d tương tự nhé
c,\(\left|x+\frac{1}{1.3}\right|+\left|x+\frac{1}{3.5}+\right|+...+\left|x+\frac{1}{97.99}\right|\ge0\forall x\)
\(\Rightarrow50x\ge0\Rightarrow x\ge0\)Khi đó:
\(x+\frac{1}{1.3}+x+\frac{1}{3.5}+...+x+\frac{1}{97.99}=50x\)
\(\Rightarrow49x+\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{97.99}\right)=50x\)
\(\Leftrightarrow x=\frac{1}{2}\left(1-\frac{1}{99}\right)=\frac{49}{99}\)
x/1 - x/5 + x/5 - x/9 +x/9 - x/13 ..... + x/53 - x/57 = 56/57
x/1 - x/57 = 56/57
56x/57 = 56/57
56x = 56
=> X = 1
Tk mình với bạn ơi. Đúng rồi nhé!!
CHÚC BẠN HỌC TỐT ✓✓
\(\frac{x}{1.5}+\frac{x}{5.9}+\frac{x}{9.13}+...+\frac{x}{53.57}=\frac{56}{57}\)
\(\Leftrightarrow\frac{x}{1}-\frac{x}{5}+\frac{x}{5}-\frac{x}{7}+\frac{x}{9}-\frac{x}{13}+...+\frac{x}{53}-\frac{x}{57}=\frac{56}{57}\)
\(\Leftrightarrow\frac{x}{1}-\frac{x}{57}=\frac{56}{57}\)
\(\Leftrightarrow\frac{x.57}{57}-\frac{x}{57}=\frac{56}{57}\)
\(\Leftrightarrow\frac{x.57-x}{57}=\frac{56}{57}\)
\(\Leftrightarrow\frac{x.56}{57}=\frac{56}{57}\)
\(\Leftrightarrow x=1\)
a) \(\frac{x-1}{21}=\frac{3}{x+1}\)( ĐKXĐ : x khác -1 )
<=> ( x - 1 )( x + 1 ) = 21.3
<=> x2 - 1 = 63
<=> x2 = 64
<=> x2 = ( ±8 )2
<=> x = ±8 ( tmđk )
b) \(\frac{7}{x}+\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+...+\frac{4}{41\cdot45}=\frac{29}{45}\)( ĐKXĐ : x khác 0 )
<=> \(\frac{7}{x}+\left(\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+...+\frac{4}{41\cdot45}\right)=\frac{29}{45}\)
<=> \(\frac{7}{x}+\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}\right)=\frac{29}{45}\)
<=> \(\frac{7}{x}+\left(\frac{1}{5}-\frac{1}{45}\right)=\frac{29}{45}\)
<=> \(\frac{7}{x}+\frac{8}{45}=\frac{29}{45}\)
<=> \(\frac{7}{x}=\frac{7}{15}\)
<=> x = 15 ( tmđk )
a) \(\frac{x-1}{21}=\frac{3}{x+1}\Leftrightarrow\left(x-1\right)\left(x+1\right)=3.21\)
\(\Leftrightarrow x^2-1=63\Rightarrow x^2=63+1=64\Rightarrow x=\pm8\)
b) \(\frac{7}{x}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{41.45}=\frac{29}{45}\)
\(\Leftrightarrow\frac{7}{x}+\left(\frac{1}{5}-\frac{1}{45}\right)=\frac{29}{45}\Leftrightarrow\frac{7}{x}+\frac{8}{45}=\frac{29}{45}\)
\(\Leftrightarrow\frac{7}{x}=\frac{29}{45}-\frac{8}{45}=\frac{21}{45}=\frac{7}{15}\Rightarrow x=15\)
Gọi A=1/1.5+1/5.9+...+1/397.401
Ta có:
\(4A=\frac{4}{1.5}+\frac{4}{5.9}+...+\frac{4}{397.401}=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+...+\frac{1}{397}-\frac{1}{401}=1-\frac{1}{401}\)
=>\(A=\frac{1}{4}-\frac{1}{1604}< \frac{1}{4}\)
=>đpcm
d, Đặt biểu thức trên là S, ta có:
S = 1/1.5 + 1/5.9 + .... + 1/397.401 < 1/4
Nhân cả hai vế với 4 ,ta có :
4S = 4. ( 1/1.5 + 1/5.9 + .... + 1/397.401 )
4S = 4/1.5 + 4/5.9 + .... + 4/397.401
4S = 1 - 1/5 + 1/5 - 1/9 + .... +1/397 - 1/401
4S = 1 - 1/401
4S = 400/401
S = 400/401 : 4
S = 100/401.
Ta có : 100/401 và 1/4
400/1604 < 401/1604
=> S < 1/4
Vậy 1/1.5 + 1/5.9 + .... + 1/397.401 < 1/4
e. \(\frac{7}{x}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{41.45}=\frac{29}{45}\)
\(\Rightarrow\frac{7}{x}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}=\frac{29}{45}\)
\(\Rightarrow\frac{7}{x}+\frac{1}{5}-\frac{1}{45}=\frac{29}{45}\)
\(\Rightarrow\frac{7}{x}=\frac{7}{15}\)
\(\Rightarrow x=15\)
f. \(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\right)x=\frac{22}{45}\)
\(\Rightarrow\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{8.9.10}\right)x=\frac{22}{45}\)
\(\Rightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right)x=\frac{22}{45}\)
\(\Rightarrow\frac{1}{2}\left(\frac{1}{2}-\frac{1}{90}\right)x=\frac{22}{45}\)
\(\Rightarrow\frac{1}{2}.\frac{22}{45}x=\frac{22}{45}\)
\(\Rightarrow\frac{11}{45}x=\frac{22}{45}\)
\(\Rightarrow x=2\)