\(^2\)-(x-3)(x+3)=5

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2017

<=> x2 - 2.x.2 + 22 - (x2+ 3x - 3x - 9) = 5

<=> x2 - 4x + 4 - x2 - 3x + 3x + 9 = 5

<=> x2 - 4x + 4 - x2 -3x + 3x + 9 - 5 = 0

<=> -x2 - 4x + 8 = 0

Rồi bạn vận dụng kiến thức tìm Denta nhé

chọn ý B nha 

30 tháng 11 2019

\(2x\left(x-3\right)+5\left(x-3\right)=0\)

\(\Leftrightarrow\left(2x+5\right)\left(x-3\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}2x+5=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{-5}{2}\\x=3\end{cases}}\)

Chọn ( B )

21 tháng 10 2021

\(A=\left(x-4\right)^2-\left(x+4\right)^2-16\left(x-2\right)\)

\(=x^2-8x+16-x^2-8x-16-16x+32\)

\(=-32x+32\)

Biểu thức phụ thuộc vào giá trị của biến

21 tháng 10 2021

b) \(\left(x-3\right)^3-\left(x+3\right)^3+12\left(x+1\right)\left(x-1\right)\)

\(=\left(x^3-9x^2+27x-27\right)-\left(x^3+9x^2+27x+27\right)+12x^2-12\)

\(=-6x^2-66\)

Biểu thức này phụ thuộc vào giá trị của biến

31 tháng 8 2020

c) \(\left(3x+5\right)^2-2\left(2x+3\right)\left(3x+5\right)+\left(2x+3\right)^2=\left(x+2\right)^3\)

\(\Leftrightarrow\left[\left(3x+5\right)-\left(2x+3\right)\right]^2=\left(x+2\right)^3\)

\(\Leftrightarrow\left(3x+5-2x-3\right)^2=\left(x+2\right)^3\)

\(\Leftrightarrow\left(x+2\right)^2=\left(x+2\right)^3\)

\(\Leftrightarrow\left(x+2\right)^3-\left(x+2\right)^2=0\)

\(\Leftrightarrow\left(x+2\right)^2.\left(x+2-1\right)=0\)

\(\Leftrightarrow\left(x+2\right)^2.\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-1\end{cases}}\)

Vậy tập nghiệm của phương trình là: \(S=\left\{-2;-1\right\}\)

16 tháng 8 2017

ANH HAY CHỊ ƠI LÀM GIÚP EM BAI LỚP 7 ĐI O DUOI DAY A

16 tháng 8 2017

a) \(\left(x-3\right)^2-4=0\)

\(\Rightarrow\left(x-3\right)^2=4\)

\(\Rightarrow\left(x-3\right)^2=2^2=\left(-2\right)^2\)

\(\Rightarrow x-3=2\)hoặc \(\left(x-3\right)=-2\)

\(\Rightarrow\hept{\begin{cases}x-3=2\\x-3=-2\end{cases}\Rightarrow\hept{\begin{cases}x=5\\x=-1\end{cases}}}\)

Vậy \(x\in\left\{5;-1\right\}\)

b) \(x^2-2x=24\)

\(\Rightarrow x.\left(x+2\right)=24\)

\(\Rightarrow x.\left(x+2\right)=4.6\)

\(\Rightarrow x=4\)

Vậy \(x=4\)

12 tháng 8 2016

\(1,\frac{x^2}{2}+\frac{y^2}{3}+\frac{z^2}{4}=\frac{x^2+y^2+z^2}{5}=\frac{x^2}{5}+\frac{y^2}{5}+\frac{z^2}{5}\)

\(=>\frac{x^2}{2}+\frac{y^2}{3}+\frac{z^2}{4}-\left(\frac{x^2}{5}+\frac{y^2}{5}+\frac{z^2}{5}\right)=0\)

\(=>\left(\frac{x^2}{2}-\frac{x^2}{5}\right)+\left(\frac{y^2}{3}-\frac{y^2}{5}\right)+\left(\frac{z^2}{4}-\frac{z^2}{5}\right)=0\)

\(=>\left(\frac{5x^2}{10}-\frac{2x^2}{10}\right)+\left(\frac{5y^2}{15}-\frac{3y^2}{15}\right)+\left(\frac{5z^2}{20}-\frac{4z^2}{20}\right)=0\)

\(=>\frac{3}{10}x^2+\frac{2}{15}y^2+\frac{1}{20}z^2=0\)

Tổng 3 số không âm=0 <=> chúng đều=0

\(< =>\frac{3}{10}x^2=\frac{2}{15}y^2=\frac{1}{20}z^2=0< =>x=y=z=0\)

Vậy x=y=z=0

\(2,x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=4\)

\(=>x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}-4=0\)

\(=>\left(x^2+\frac{1}{x^2}-2\right)+\left(y^2+\frac{1}{y^2}-2\right)=0\)

\(=>\left(x^2-2+\frac{1}{x^2}\right)+\left(y^2-2+\frac{1}{y^2}\right)=0\)

\(=>\left(x^2-2.x.\frac{1}{x}+\frac{1}{x^2}\right)+\left(y^2-2.y.\frac{1}{y}+\frac{1}{y^2}\right)=0\)

\(=>\left(x-\frac{1}{x}\right)^2+\left(y-\frac{1}{y}\right)^2=0\)

Tổng 2 số không âm=0 <=> chúng đều=0

\(< =>\hept{\begin{cases}x-\frac{1}{x}=0\\y-\frac{1}{y}=0\end{cases}< =>\hept{\begin{cases}x=\frac{1}{x}\\y=\frac{1}{y}\end{cases}< =>\hept{\begin{cases}x^2=1\\y^2=1\end{cases}}}}\)\(< =>\hept{\begin{cases}x\in\left\{-1;1\right\}\\y\in\left\{-1;1\right\}\end{cases}}\)

Vậy có 4 cặp (x;y) cần tìm là (1;1) ;(1;-1);(-1;1);(-1;-1)

15 tháng 8 2016

cảm ơn bạn Hoàng Phúc