Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) \(\Leftrightarrow5x^2-6x+1=0\Leftrightarrow\left(x-1\right)\left(5x-1\right)=0\Leftrightarrow x=\frac{1}{5}\) hoặc x = 1
c) \(\Leftrightarrow x^2+4x-21-x^2-4x+5=0\Leftrightarrow-16=0\) (vô lí) => PT vô nghiệm
d) \(\Leftrightarrow x^2+3x-10=0\Leftrightarrow\left(x-2\right)\left(x+5\right)=0\Leftrightarrow\)x = 2 hoặc x = -5
e) \(\Leftrightarrow x\left(x-2\right)=0\)<=> x = 0 hoặc x = 2
bai 1
1 thay k=0 vao pt ta co 4x^2-25+0^2+4*0*x=0
<=>(2x)^2-5^2=0
<=>(2x+5)*(2x-5)=0
<=>2x+5=0 hoăc 2x-5 =0 tiếp tục giải ý 2 tương tự
20) -5-(x + 3) = 2 - 5x ⇔ -5 - x - 3 = 2 -5x ⇔ 4x = 10 ⇔ x = \(\frac{5}{2}\)
Vậy...
Bài 4.
1) ( x + 3 )( x2 - 3x + 9 ) - x( x2 - 3 ) = 8( 5 - x )
<=> x3 + 27 - x3 + 3x = 40 - 8x
<=> 27 + 3x = 40 - 8x
<=> 3x + 8x = 40 - 27
<=> 11x = 13
<=> x = 13/11
2) ( 2x + 1 )3 + ( 2x + 3 )3 = 0
<=> [ ( 2x + 1 ) + ( 2x + 3 ) ][ ( 2x + 1 )2 - ( 2x + 1 )( 2x + 3 ) + ( 2x + 3 )2 ] = 0
<=> ( 2x + 1 + 2x + 3 )[ 4x2 + 4x + 1 - ( 4x2 + 8x + 3 ) + 4x2 + 12x + 9 ] = 0
<=> ( 4x + 4 )( 8x2 + 16x + 10 - 4x2 - 8x - 3 ) = 0
<=> ( 4x + 4 )( 4x2 + 8x + 7 ) = 0
<=> \(\orbr{\begin{cases}4x+4=0\\4x^2+8x+7=0\end{cases}}\)
+) 4x + 4 = 0
<=> 4x = -4
<=> x = -1
+) 4x2 + 8x + 7 = 0 (*)
Ta có 4x2 + 8x + 7 = ( 4x2 + 8x + 4 ) + 3 = ( 2x + 2 )2 + 3 ≥ 3 > 0 ∀ x
=> (*) không xảy ra
Vậy x = -1
Bài 5.
1) A = x2 - 2x + 2 = ( x2 - 2x + 1 ) + 1 = ( x - 1 )2 + 1 ≥ 1 ∀ x
Đẳng thức xảy ra <=> x - 1 = 0 => x = 1
=> MinA = 1 <=> x = 1
2) A = 4x2 + 4x + 5 = ( 4x2 + 4x + 1 ) + 4 = ( 2x + 1 )2 + 4 ≥ 4 ∀ x
Đẳng thức xảy ra <=> 2x + 1 = 0 => x = -1/2
=> MinA = 4 <=> x = -1/2
3) A = 2x2 + 3x + 3 = 2( x2 + 3/2x + 9/16 ) + 15/8 = 2( x + 3/4 )2 + 15/8 ≥ 15/8 ∀ x
Đẳng thức xảy ra <=> x + 3/4 = 0 => x = -3/4
=> MinA = 15/8 <=> x = -3/4
4) A = 3x2 + 5x = 3( x2 + 5/3x + 25/36 ) - 25/12 = 3( x + 5/6 )2 - 25/12 ≥ -25/12 ∀ x
Đẳng thức xảy ra <=> x + 5/6 = 0 => x = -5/6
=> MinA = -25/12 <=> x = -5/6
5) B = 2x - x2 - 4 = -( x2 - 2x + 1 ) - 3 = -( x - 1 )2 - 3 ≤ -3 ∀ x
Đẳng thức xảy ra <=> x - 1 = 0 => x = 12
=> MaxB = -3 <=> x = 1
6) -x2 - 4x = -( x2 + 4x + 4 ) + 4 = -( x + 2 )2 + 4 ≤ 4 ∀ x
Đẳng thức xảy ra <=> x + 2 = 0 => x = -2
=> MaxB = 4 <=> x = -2
7) B = 3x - 2x2 - 2 = -2( x2 - 3/2x + 9/16 ) - 7/8 = -2( x - 3/4 )2 - 7/8 ≤ -7/8 ∀ x
Đẳng thức xảy ra <=> x - 3/4 = 0 => x = 3/4
=> MaxB = -7/8 <=> x = 3/4
8) B = x( 3 - x ) = -x2 + 3x = -( x2 - 3x + 9/4 ) + 9/4 = -( x - 3/2 )2 + 9/4 ≤ 9/4 ∀ x
Đẳng thức xảy ra <=> x - 3/2 = 0 => x = 3/2
=> MaxB = 9/4 <=> x = 3/2
9) A = ( x - 1 )( x + 1 )( x + 2 )( x + 4 )
= [ ( x - 1 )( x + 4 ) ][ ( x + 1 )( x + 2 ) ]
= ( x2 + 3x - 4 )( x2 + 3x + 2 ) (*)
Đặt t = x2 + 3x - 4
(*) <=> t( t + 6 )
= t2 + 6t
= ( t2 + 6t + 9 ) - 9
= ( t + 3 )2 - 9
= ( x2 + 3x - 4 + 3 )2 - 9
= ( x2 + 3x - 1 )2 - 9 ≥ -9 ∀ x
=> MinA = -9 ( chỗ này mình không xét giá trị của x vì nghiệm nó xấu lắm '-' )
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
\(A=x^2-2x+10\)
\(A=\left(x^2-2x+1\right)+9\)
\(A=\left(x-1\right)^2+9\)
Mà \(\left(x-1\right)^2\ge0\)
\(\Rightarrow A\ge9\)
Dấu "=" xảy ra khi :
\(x-1=0\Leftrightarrow x=1\)
Vậy Min A = 9 khi x = 1
\(B=x^2-5x-7\)
\(B=\left(x^2-5x+\frac{25}{4}\right)-\frac{53}{4}\)
\(B=\left(x-\frac{5}{2}\right)^2-\frac{53}{4}\)
Mà \(\left(x-\frac{5}{2}\right)^2\ge0\)
\(\Rightarrow B\ge-\frac{53}{4}\)
Dấu "=" xảy ra khi :
\(x-\frac{5}{2}=0\Leftrightarrow x=\frac{5}{2}\)
Vậy \(B_{Min}=-\frac{53}{4}\Leftrightarrow x=\frac{5}{2}\)
( x - 1 )( x + 2 ) - x - 2 = 0
<=> ( x - 1 )( x + 2 ) - ( x + 2 ) = 0
<=> ( x + 2 )( x - 2 ) = 0
<=> x = ±2
( 2x - 7 )3 = 8( 7 - 2x )2
<=> ( 2x - 7 )3 - 8( 2x - 7 )2 = 0
<=> ( 2x - 7 )2( 2x - 15 ) = 0
<=> x = 7/2 hoặc x = 15/2